Methods of creating models of road networks based on cadastral data

Elżbieta Lewandowicz
ORCID: 0000-0001-8847-2835
University of Warmia and Mazury in Olsztyn
Faculty of Geodesy, Geospatial and Civil Engineering
Poland

Przemysław Lisowski
ORCID: 0000-0002-6111-5763
AGH University of Science and Technology in Kraków
Faculty of Geology, Geophysics and Environmental Protection
Department of Geoinformatics and Applied Computer Science
Poland

Abstract

Cadastral data is the basic data for spatial analyses in many areas of research. Converting this data to new forms, one can obtain new models of cadastral data. The aim of this publication is to transform the set of cadastral parcel data into road network models. During the first stage of research works different segmentations of road parcels were performed and data resolution was improved. At the second stage the generated model of the road network was presented. It was based on topological-and-semantic relations. The results indicate that road network models can be automatically obtained from cadastral data and may be used for network analyses. The quality of models depends on regularity of cadastral structures. The presented methodology can be used to supplement the network of road routes in inaccessible areas, and inventoried in the cadastre. It should also be used to generate axes of other elongated, surface features, such as walking routes saved as polygons.

Received 7.05.2018 Accepted 10.08.2018 Published 15.11.2018

Keywords:

cadastral data; geoinformation algorithms; GIS; model of a road network

Full Text:

PDF (Polish)

References

Bogusławski Paweł, Mahdjoubi Lamine, Zverovich Vadim, Fadli Fodul, 2016: Automated construction of variable density navigable networks in a 3D indoor environment for emergency response. Automation in Construction 72:115-128.

Costa Constantinos, Chatzimilioudis Georgios, Zeinalipour-Yazti Demetrios, Mokbel Mohamed F., 2017: Towards Real-Time Road Traffic Analytics using Telco Big Data. Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics, Article No. 5, August 28, 2017. Munich, Germany.

Deo Narsingh, 1974: Graph Theory with Applications to Engineering and Computer Science. Dover Publications, INC, Mineola, New York: 496 p.

Eder Günther, Held Martin, Palfrader Peter, 2018: Parallelized ear clipping for the triangulation and constrained Delaunay triangulation of polygons. Computational Geometry 73: 15-23, https://doi.org/10.1016/j.comgeo.2018.01.004

Hycner Ryszard: 2004: Podstawy katastru (Foundations of the cadastre). Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH.

Kowalski Michał, Wiśniewski Szymon, 2017: Centrum handlowe jako czynnik ruchotwórczy w transporcie samochodowym – przykład Portu Łódź (A shopping centre as a traffic-generating factor In car transport as exemplified by Port Łódź, Poland). Przegląd Geograficzny 89 (4): 617-639.

Kulikowski J.L., 1986: Zarys teorii grafów (Outline of the graph theory). Warszawa: Państwowe Wydawnictwo Naukowe.

Krūminaitė Marija, Zlatanova Sisi, 2014: Indoor Space Subdivision for Indoor Navigation. Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness: 25-31. Dallas/Fort Worth, Texas November 04, 2014, ACM, New York, NY, USA.

Krūminaitė Marija, 2014: Space Subdivision for Indoor Navigation. Master Thesis, TU Delft, the Netherlands. https://repository.tudelft.nl/islandora/object/uuid:c2a9a308-5cdc-4df2-bf30-9eea5ea176c5

Lee Jiyeong, 2004: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. GeoInformatica 8 (3): 237-264.

Lewandowicz Elżbieta, Packa Alicja, Kondratowicz Szymon, 2013: Przekształcanie danych topologicznych, geometrycznych i atrybutowych GIS do modeli analitycznych (Conversion topological geometric and attribute GIS data to analytical models). Acta Universitatis Lodziensis, Folia Geographica Socio-Oeconomica 14: 33-44, Łódź.

Lewandowicz Elżbieta, 2013: Modele struktur katastralnych (Cadastral structure models). Roczniki Geomatyki 11 (2): 47-58, Warszawa: PTIP.

Lewandowicz Elżbieta, 2010: Algebraiczne przekształcenia danych topologicznych mapy ewidencyjnej (Algebraic transformations of cadastral map topology data). Roczniki Geomatyki 8 (5): 79-86, Warszawa: PTIP.

Lisowski Przemysław, Lewandowicz Elżbieta, 2017: Topological Model of Selected Cadastral Structures Visualized in Form of Graphs. Geomatics and Environmental Engineering 11 (4): 51-63.

Lisowski Przemysław, Lewandowicz Elżbieta, 2018: Metodyka zapisu topologicznego modelu struktur katastralnych w grafowych bazach danych (Methodology of storing topological models of cadastral structures in graph databases). Roczniki Geomatyki 16 (1): 45-54, Warszawa: PTIP.

Tang S.J., Zhu Q., Wang W.W., Zhang Y.T., 2015: Automatic topology derivation from IFC building model for in-door intelligent navigation. Remote Sensing and Spatial Information Sciences, vol. XL-4/W5: 7-11.

Yang Liping, Worboys Michael F., 2015: Generation of navigation graphs for indoor space. International Journal of Geographical Information Science 29(10): 1737-1756.

Wallgrün Jan Oliver, 2005: Autonomous construction of hierarchical Voronoi-based route graph representations. [In:] Freksa C., Knauff M., Krieg-Brückner B., Nebel B., Barkowsky T. (eds.), International Conference on Spatial Cognition IV. Reasoning, Action, Interaction: 413–433. Lecture Notes in Computer Science, Springer Berlin Heidelberg.

Xu Man, Wel Shuangfeng, Zlatanova Sisi, 2017: BIM-based indoor path planning considering obstacles. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. IV-2/W4. ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China.

Zverovich Vadim, Mahdjoubi L., Bogusławski P., Fadli F., 2017: Analytic Prioritization of Indoor Routes for Search and Rescue Operations in Hazardous Environments. Computer-Aided Civil and Infrastructure Engineering 31(8): 617-632.