Generalization of topographic spatial data in the object-oriented Clarity environment
Abstract
The scope of the presented research includes an attempt of buildings and roads generalization based on the data derived from topographic database. The experiments were prepared within cooperation between the Warsaw University and the Technical University of Haifa (‘TECHNION) with the support of 1Spatial company. These studies include generalization of buildings and roads which are part of Israeli spatial reference database from the detail level of 1:10,000 to 1:50,000. In order to verify the research, the generalization results were compared with the generalization model implemented in MATLAB environment.
The work prepared within the framework of this study will help to reduce subjectivity of the generalization process of spatial data. Development of automatic generalization framework is also very important in the process of improving map editing and their generalization.
Keywords:
Full Text:
PDF (Polish)References
Ai, T., Li, J. 2008: An Object Oriented Model for Representation Life span Over Scale Space. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. WG II/3 Multiple Representations of Image and Vector Data, Beijing: 425-432.
Bader M., Barrault M., Weibel R., 2005: Building displacement over a ductile truss. Intern. J. of Geogr. Inform. Science vol. 19, no. 8–9: 915–936.
Bell M., Neuffer D., Woodsford P., 2004: Agent-based generalization - an update on progress. Kartographische Nachrichten Bd 54, nr 4: 170-177.
Bildirici O., 2004: Building and road generalization with the Change generalization software using turkish topographic base map data. Cartography and Geographic Information Science vol. 31, nr 1: 43–54.
Duchene C , 2003: Coordinative agents for automated generalisation of rural areas. ICA Workshop on Generalization and Multiple Representation, Paryż.
http://generalisation.icaci.org/images/files/workshop/workshop2003/duchene_v1.pdf
Duchene C., Burghartd D., Stoter J., 2013: Designing MRDB and multi-scale DCMs: sharing experience between governmental mapping agencies. ICA Workshop on Generalization and Multiple Representation, Drezno.
http://generalisation.icaci.org/images/files/workshop/workshop2013/slides/2013_WSICA_DucheneEtAl.pdf
Harrie, L., 1999: The Constraint Method for Solving Spatial Conflicts in Cartographic Generalization. Cartography and Geographic Information System vol. 26, No. 1: 55-69.
Harrie, L., 200:, Weight – setting and Quality Assessment in simultaneous Graphic Generalization. The Cartographic Journal vol. 40 No. 3: 221-233.
Hehai W., 2001: Research of Fundamental Theory and Technical Approaches to Automating Map Generalization. Proceedings of the 20th International Cartographic Conference, ICC 2001 Beijing, China, 3:1914-1921.
Jones C.B., Ware M., 2005: Map Generalization in the Web Age. International Journal of Geographic Information Science 19(8-9): 859-870.
Joubran, A. J., Doytsher, Y., 2005: A Combined Automated Generalization Model Based on the Relative Forces between Spatial Objects. Proceedings of the XXII International Cartographic Conference, A Coruña, Spain.
Karsznia I., Ostrowski W., 2011: Możliwości wykorzystania morfologii matematycznej w procesie generalizacji zabudowy. [W:] Żyszkowska W., Spallek W. (red.), Główne problemy współczesnej kartografii. Zastosowanie statystyki w GIS i Kartografii, Wrocław: 73-82.
Kilpelainen T. 200:, Knowledge Acquisition for Generalization Rules. Cartography and Geographical Information System 27(1): 41-50.
Kozioł K., 2012: Operatory generalizacji warstwy zabudowy. Roczniki Geomatyki t. 10, z.7(57): 45-57, PTIP Warszawa.
Liqiang Z., Deng H., Chen D., Zhen W., 2013: A spatial cognition-based urban building clustering approach and its applications. Intern. J. of Geogr. Inform. Science vol. 27, no. 4: 721-740.
Mustafa, N., Krishnan, S., Varadhan, G., Venkatasubramanian, S., 2006: Dynamic simplification and visualization of large maps. International Journal of Geographical Information Science vol. 20, No. 3: 273-302.
Revell P., 2008: A review of the Clarity generalization platform and the customisations developed at Ordnance Survey research. ICA Workshop on Generalization and Multiple Representation, Montpellier. http://aci.ign.fr/montpellier2008/papers/17_Revell.pdf
Richardson, D. E., Mackaness, A. W. 1999: Computational Processes for Map
Generalization.(Introduction). Cartography and Geographical Information System vol. 26, No. 1: 3-5.
Ruas A., 1999 : Modele de generalisation de donnes geographiques a base de constraintes et d'autonomie. Praca doktorska, Uniwersytet Marne la Vallee, Paryż.
Sarjakoski T., 2007: Conceptual models of generalization and multiple representation. [In:] Mackaness A. W., Ruas A., Sarjakoski T., Generalization of geographic information: cartographic modelling and applications, Elsevier.
Sester M., 2005: Optimization approaches for generalization and data abstraction. Intern. J. of Geogr. Inform. Science vol. 19, no. 8–9: 871-897.
Steiniger, S., Weibel, R. 2007: Relations among Map Objects in Cartographic Generalization. Cartography and Geographic Information Science issue 34 (3): 175-179.
Stoter J., Baella B., Blok C., Burghardt D., Davila F., Duchene C., Pla M., Regnauld N., Touya G., 2010: EuroSDR research on state-of-the-art of automated generalization in commercial software: main findings and conclusions. ICA Workshop on Generalization and Multiple Representation, Zurich. http://generalisation.icaci.org/images/files/workshop/workshop2010/genemr2010_submission_4.pdf
Töpfer F., Pillewizer W., 1966: The principles of selection: a means of cartographic Generalization. The Cartographic Journal vol. 3, nr 1: 10-16.
Załącznik do rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 17 listopada 2011 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych t. II.