EGMS technology for building condition assessment and disaster prevention
Streszczenie
The analysis in Olsztyn, covering 14,383 buildings, reveals significant displacement variations. Damaged buildings exhibit the highest velocity movements, up from –7.3 mm/year to +18 mm/year vertically and from –12.3 mm/year to +21.2 mm/year horizontally. High values indicate a significant influence of factors such as unstable ground, structural damage or environmental impact (e.g., landslides, vibrations), which increases the risk of further damage to these buildings.
In contrast, in-use (98.04% of buildings) and inactive (0.92%) buildings are more stable, with displacements typically within ±3 mm/year. Nine analyzed buildings were classified as high risk and 56 as medium risk. Validation against historical disaster records in Olsztyn during the study period confirms EGMS's effectiveness in improving risk prediction accuracy. The findings underscore EGMS's potential as a vital tool for systematic monitoring, facilitating early hazard detection, and enhancing urban safety and infrastructure resilience through data-driven disaster prevention strategies.
Słowa kluczowe:
Pełny tekst:
PDF (English)Bibliografia
Capes, R., Passera, E., 2023. Product Description and Format Specification. End-to-end implementation and operation of the European Ground Motion Service (EGMS)
Costantini, M., Falco, S., Malvarosa, F., Minati, F., Trillo ,F., Vecchioli, F. 2014. Persistent
Scatterer Pair Interferometry: Approach and Application to COSMO-SkyMed SAR Data,
in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7,
no. 7, 2869-2879. https://doi.org/10.1109/JSTARS.2014.2343915.
Crosetto, M., Solari, L. 2023. Satellite Interferometry Data Interpretation Andexploitation Case
Studies From The European Ground Motion Service (EGMS). BOOK Elsevier.
https://doi.org/10.1016/c2022-0-01853-5
Crosetto, M.; Solari, L.; Mróz, M. 2023. Pan-European Deformation Monitoring: The European
Ground Motion Service. En 5th Joint International Symposium on Deformation Monitoring
(JISDM 2022). Editorial Universitat Politècnica de València. 383-388.
https://doi.org/10.4995/JISDM2022.2022.13876
Dygulska, A., Perlańska, E. 2015. Ochrona Środowiska III. Mapa wietrzności Polski Projekt
Czysta Energia Akademickie Centrum Czystej Energii. Dygulska, A., Perlańska, E. 2015.
Environmental Protection III. Windiness Map of Poland, Clean Energy Project, Academic
Clean Energy Center.
Dz. U. 1994 Nr 89 poz. 414. Ustawa z dnia 7 lipca 1994 r. Prawo budowlane. Dz.U. 2024 poz.
Journal of Laws 1994 No. 89, item 414. Act of July 7, 1994, Construction Law. Journal of
Laws 2024, item 725.
Dz.U. 2021 poz. 1412. Rozporządzenie Ministra Rozwoju, Pracy i Technologii z dnia 27 lipca
r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektówogólnogeograficznych, a także standardowych opracowań kartograficznych. Journal of Laws
, item 1412. Regulation of the Minister of Development, Labor and Technology of July
, 2021, regarding the database of topographic objects and the database of general geographic
objects, as well as standard cartographic studies.
Dz.U. 2023 poz. 89 . Rozporządzenie Ministra Rozwoju i Technologii z dnia 16 grudnia 2022 r.
w sprawie baz danych dotyczących zobrazowań lotniczych i satelitarnych oraz ortofotomapy i
numerycznego modelu terenu. Journal of Laws 2023, item 89. Regulation of the Minister of
Development and Technology of December 16, 2022, regarding databases concerning aerial
and satellite imagery, as well as orthophotomaps and digital terrain models.
EGMS Explorer. Available online: (https://egms.land.copernicus.eu/) (accessed on 18.10.2024)
Eurokod 7 (PN-EN 1997-1:2008) (Geotechnika – nośność i osiadanie) (Geotechnics – bearing
capacity and settlement)
Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. 2007. InSAR Principles: Guidelines for SAR
Interferometry Processing and Interpretation. European Space Agency
Ferretti, A., Passera, E., Capes, R. 2023. Algorithm Theoretical Basis Document. End-to-end
implementation and operation of the European Ground Motion Service (EGMS)
Festa, D., & Del Soldato, M. (2023). EGMStream, a Desktop App for EGMS Data
Downstream. Remote Sensing, 15(10), 2581. https://doi.org/10.3390/rs15102581
Gao, Q.; Crosetto, M.; Monserrat, O.; Palama, R.; Barra, A. 2022. Infrastructure Monitoring Using
the Interferometric Synthetic Aperture Radar (INSAR) Technique. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 43, 271–276.
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-271-2022
Geoportal. Available online: (https://www.geoportal.gov.pl/) (accessed on 17.10.2024)
Główny Inspektor Nadzoru Budowlanego (GINB). 2023. Katastrofy budowlane w 2023 roku.
Główny Urząd Nadzoru Budowlanego (GUNB). Chief Inspector of Building Control (GINB).
Construction Disasters in 2023. Main Office of Building Control (GUNB).
Główny Inspektor Nadzoru Budowlanego (GINB). 2022. Katastrofy budowlane w 2022 roku.
Główny Urząd Nadzoru Budowlanego (GUNB). Chief Inspector of Building Control (GINB).
Construction Disasters in 2022. Main Office of Building Control (GUNB).
Główny Inspektor Nadzoru Budowlanego (GINB). 2021. Katastrofy budowlane w 2021 roku.
Główny Urząd Nadzoru Budowlanego (GUNB). Chief Inspector of Building Control (GINB).
Construction Disasters in 2021. Main Office of Building Control (GUNB).
Główny Inspektor Nadzoru Budowlanego (GINB). 2020. Katastrofy budowlane w 2020 roku.
Główny Urząd Nadzoru Budowlanego (GUNB). Chief Inspector of Building Control (GINB).
Construction Disasters in 2020. Main Office of Building Control (GUNB).
Główny Inspektor Nadzoru Budowlanego (GINB). 2019. Katastrofy budowlane w 2019 roku.
Główny Urząd Nadzoru Budowlanego (GUNB). Chief Inspector of Building Control (GINB).
Construction Disasters in 2019. Main Office of Building Control (GUNB).
Guoyang W., Peng L., Zhenhong L., Jie L., Yi Z., Houjie W. 2024, InSAR and machine learning reveal new understanding of coastal subsidence risk in the Yellow River Delta. China, Science of The Total Environment, 915. https://doi.org/10.1016/j.scitotenv.2024.170203
He, Y., Xu, G., Kaufmann, H., Wang, J., Ma, H., & Liu, T. 2021. Integration of InSAR and LiDAR
Technologies for a Detailed Urban Subsidence and Hazard Assessment in Shenzhen,
China. Remote Sensing, 13(12), 2366. https://doi.org/10.3390/rs13122366
Hlaváčová, I., Kolomazník, J., Struhár J., Orlitová, E. 2023. InSAR Ground Motion Mapping in
Support of Urban Resilience and Regional Landscape Planning. Joint Urban Remote Sensing
Event (JURSE), 1-4. https://doi.org/10.1109/JURSE57346.2023.10144209
Hrysiewicz, A., Khoshlahjeh Azar, M., Holohan, E.P. 2024. EGMS-toolkit: a set of Python scripts
for improved access to datasets from the European Ground Motion Service. Earth Science
Informatics 17, 3825–3837. https://doi.org/10.1007/s12145-024-01356-w
IMGW (Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy). Available
online: https://imgw.pl/edukacja/slowniki-hydrologiczno-meteorologiczne/ (accessed on
10.2024). Institute of Meteorology and Water Management, National Research Institute
(IMGW)
Kotzerke, P., Siegmund, R., Langenwalter, J. 2022. Product User Manual. End-to-end
implementation and operation of the European Ground Motion Service (EGMS)
Larsen-NORCE, Y., Bishop, C., Jøkulsson, G., Gjøvik Kongsberg, L.-P., Frauenfelder, R., Salazar,
S. E. 2021. Geotechnical, LAND MONITORING SERVICE, European Ground Motion Service:
Service Implementation Plan and Product Specification Document
Mele, A., Crosetto, M., Miano, A., & Prota, A. (2023). ADAfinder Tool Applied to EGMS Data
for the Structural Health Monitoring of Urban Settlements. Remote Sensing, 15(2), 324.
https://doi.org/10.3390/rs15020324
Naumowicz., B., Kowalczyk, K., Pelc-Mieczkowska. R. 2024. PPP solution-based model of
absolute vertical movements of the Earth's crust in Poland with consideration of geological,
tectonic, hydrological and mineral information. ESS Open Archive.
https://doi.org/10.22541/essoar.173046842.26349555/v1
Nikolakopoulos, K. G., Kyriou, A., Koukouvelas, I. K., Tomaras, N., Lyros, E. 2023. UAV, GNSS,
and InSAR Data Analyses for Landslide Monitoring in a Mountainous Village in Western
Greece. Remote Sensing, 15(11), 2870. https://doi.org/10.3390/rs15112870
Shahbazi, S., Barra, A.; Gao, Qi.; Crosetto, M. 2024a. Detection of buildings with potential damage
using differential deformation maps, Volume 218, Part B, 57-69. ISPRS Journal of
Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2024.10.008
Shahbazi, S., Barra, A., Navarro, J. A., Crosetto, M. 2024b. From EGMS Data to a Differential
Deformation Map For Buildings at Continent Level. Procedia Computer Science, 239, 2150-
https://doi.org/10.1016/j.procs.2024.06.403
Uchwała Nr LI/816/22 Rady Miasta Olsztyna z dnia 28 września 2022 r. Załącznik: Strategia
Rozwoju Miasta – Olsztyn 2030+. Uchwała Nr LI/816/22 Rady Miasta Olsztyna z dnia 28
września 2022 r. Załącznik: Strategia Rozwoju Miasta – Olsztyn 2030+.
Wieczorek, B. (2020). Evaluation of deformations in the urban area of Olsztyn using Sentinel-1
SAR interferometry. Acta Geodynamica et Geomaterialia 17, 5 18.
https://doi.org/10.13168/AGG.2019.0041