Modelling evacuation of buildings using raster analysis

Piotr Cichociński
ORCID: 0000-0002-8633-1235
AGH University of Science and Technology
Faculty of Mining Surveying and Environmental Engineering
Department of Geomatics
Poland

Abstract

Over the recent years, attempts to use geographic information systems methods and tools for modelling evacuation of buildings can be observed. In applications related to evacuation and, also, navigation, the space inside buildings is usually modelled with the use of graphs that represent interrelations between rooms. Then point objects (nodes) represent rooms and edges (linear objects) link pairs of nodes.
The objective of the work described in this paper is to examine whether it is possible to use raster data – based on the occupancy grid concept used in mobile robotics – for modelling evacuation. In particular, the study thesis assumes that raster data are not only applicable to modelling evacuation, but they also enable us to consider factors, which either cannot be included in the vector model at all or their consideration proves to be much more complicated. The thesis was proven in a series of experiments on data representing a real object. The studies revealed advantages gained while using raster data for the above mentioned purpose, i.e.: the availability (easily obtainable from architectural plans) and possibility to determine the distance between every location in the building and the emergency exit (owing to Cost Distance tool) and, also, the possibility to consider obstacles that impede movement, as well as to assess their impact on the time needed to reach the destination. The proposed concept of determining the movement cost as a function of the distance from the walls allowed to express the speed of movement as the function of the rooms’ width.

Received 29.07.2017 Accepted 6.09.2017 Published 30.12.2017

Keywords:

GIS; cost distance; cost surface; movement speed; obstacle; occupancy grid

Full Text:

PDF (Polish)

References

Almejmaj M., Meacham, B., Skorinko, J., 2015: The effects of cultural differences between the west and Saudi Arabia on emergency evacuation—clothing effects on walking speed. Fire and Materials 39(4): 353-370.

Ambroszkiewicz S., 2006: Reprezentacja przestrzenna środowiska na podstawie kognitywnych map obiektowych. Rozdział [w:] Postępy robotyki: Systemy i współdziałanie robotów (Spatial representation of the environment basing on cognitive object maps. Section [in:] Progress in robotics. Systems and cooperation of robots). Praca zbiorowa pod redakcją Krzysztofa Tchonia, Warszawa, Wydawnictwo Komunikacji i Łączności.

Bielecka E., Filipczak A., 2010: Zasady opracowywania map dostępności (Principals of elaborating accessibility maps). Roczniki Geomatyki 8(6): 29-38, PTIP, Warszawa.

Bosina E., Weidmann U, 2017: Estimating pedestrian speed using aggregated literature data. Physica A: Statistical Mechanics and its Applications 468: 1-29.

Cichociński P., Dębińska E., 2016: Application of 3D network analysis for development of evacuation plans and procedures for multi-storey building. GIS ODYSSEY 2016 : Geographic Information Systems Conference and Exhibition : 5th–9th September 2016, Perugia, Italy : conference proceedings: 63-69.

Choi J., Lee J., 2010: Micro-Level Emergency Response: 3D Geometric Network and an Agent-Based Model. Geospatial Techniques in Urban Hazard and Disaster Analysis: 415-429.

Curtin K.M., 2007: Network analysis in geographic information science: Review, assessment, and projections. Cartography and Geographic Information Science 34(2): 103-111.

Desmet A., Gelenbe E., 2013: Reactive and proactive congestion management for emergency building evacuation. In Local Computer Networks (LCN), 2013 IEEE 38th Conference on IEEE:727-730.

Domínguez B., García Á.L., Feito F.R., 2012: Semiautomatic detection of floor topology from CAD architectural drawings. Computer-Aided Design 44(5): 367-378.

Eckes K., 2008: Modelowanie przestrzeni budowli w GIS dla celów wspomagania decyzji w zarządzaniu kryzysowym (Modelling of the building space in GIS to support decision-making in crisis management). Roczniki Geomatyki 6(5): 31-38.

Eckes K, 2010: Analizy przestrzenne w czasie rzeczywistym dla wspomagania akcji ratowniczych na terenach dotkniętych powodzią (Real-time GIS analyses for supporting rescue operations on flood disaster areas). Roczniki Geomatyki 8(6): 63-68, PTIP, Warszawa.

Esri, 2017: ArcGIS Desktop Documentation. http://desktop.arcgis.com/en/documentation/

Fridolf K., Andrée K., Nilsson D., Frantzich H., 2014: The impact of smoke on walking speed. Fire and Materials 38(7): 744-759.

Gershon R.R., Magda L.A., Riley H.E., Sherman M.F., 2012: The World Trade Center evacuation study: Factors associated with initiation and length of time for evacuation. Fire and Materials 36(5-6): 481-500.

Hong I., Murray A.T., 2016: Assessing Raster GIS Approximation for Euclidean Shortest Path Routing. Transactions in GIS 20(4): 570-584.

Kady R.A., Davis J., 2009: The effect of occupant characteristics on crawling speed in evacuation. Fire safety journal 44(4): 451-457.

Kevany M.J., 2003: GIS in the World Trade Center attack – trial by fire. Computers, Environment and Urban Systems 27(6): 571-583.

Kobes M., Oberijé N., Duyvis M., 2010: Case studies on evacuation behaviour in a hotel building in BART and in real life. Pedestrian and Evacuation Dynamics 2008: 183-201.

Kułakowski K., Wąs J., Szpyrka M., 2008: Dynamiczny model świata w sterowaniu autonomicznym robotem mobilnym (Dynamic world representation in control of autonomous mobile robot). Automatyka 12(3): 833-840, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie.

Li X., Claramunt, C., Ray C., 2010: A grid graph-based model for the analysis of 2D indoor spaces. Computers, Environment and Urban Systems 34(6): 532-540.

Li X., Hijazi I., Xu M., Meouche R., 2016: Implementing two methods in GIS software for indoor routing: an empirical study. Multimedia Tools and Applications 75(24): 17449-17464.

Obwieszczenie Ministra Infrastruktury i Rozwoju z dnia 17 lipca 2015 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (The notice of the Minister of Infrastructure and Development of July 17, 2015 on the announcement of the uniform text of the Decree of the Minister of Infrastructure on technical conditions of buildings and their locations). Dz.U. 2015 poz. 1422.

Open Geospatial Consortium, 2016: OGC IndoorGML – with Corrigendum. http://docs.opengeospatial.org/is/14-005r4/14-005r4.html

Parkitny Ł., Lupa M., Materek K., Inglot A., Pałka P., Mazur K., Kozioł K., Chuchro M., 2013: Koncepcja i opracowanie Geoportalu AGH (The concept and development of AGH Geoportal). Roczniki Geomatyki 11(3): 79-85, PTIP, Warszawa.

Peacock R.D., Reneke P.A., Kuligowski E.D., Hagwood C.R., 2017: Movement on stairs during building evacuations. Fire Technology 53(2): 845-871.

Pu S., Zlatanova S., 2005: Evacuation route calculation of inner buildings. [In:] van Oosterom PJM., Zlatanova S., Fendel EM. (Eds.), Geo-information for disaster management: 1143-1161, Springer Verlag, Heidelberg.

Seike M., Kawabata N., Hasegawa M., 2016: Experiments of evacuation speed in smoke-filled tunnel. Tunnelling and Underground Space Technology 53: 61-67.

Stringfield W.H., 2000: Emergency planning and management: ensuring your company's survival in the event of a disaster. Government Institutes.

Sun J., Li X., 2011: Indoor evacuation routes planning with a grid graph-based model. [In:] Geoinformatics, 2011 19th International Conference on IEEE: 1-4.

Szczygieł R., 2012: Wielkoobszarowe pożary lasów w Polsce (Large-area Forest Fires in Poland). Bezpieczeństwo i Technika Pożarnicza: 67-78.

Taneja S., Akinci B., Garrett J.H., Soibelman L., 2016):Algorithms for automated generation of navigation models from building information models to support indoor map-matching. Automation in Construction 61: 24-41.