Problems of 3D network analysis performed in Network Analyst (ArcGIS) and pgRouting (PostGIS) software

Ewa Dębińska
ORCID: 0000-0002-5152-8628
AGH University of Science and Technology
Faculty of Mining Surveying and Environmental Engineering
Department of Geomatics
Poland

Piotr Cichociński
ORCID: 0000-0002-8633-1235
AGH University of Science and Technology
Faculty of Mining Surveying and Environmental Engineering
Department of Geomatics
Poland

Katarzyna Krystek
ORCID: 0000-0002-0136-3458
GISonLine
Poland

Abstract

There are currently two pieces of software that seem to be holding the leading position in the area of network analysis, i.e. ArcGIS with Network Analyst extension by Esri and pgRouting extension for PostGIS spatial database. The aim of the study was to present the differences and similarities observed while correct execution of network analyses as well as proper presentation of results in both pieces of software are performed.
The study proved that both 3D network analysis tools offered correctly operating, commercial and open source software functionality. In ArcGIS proper preparation of 3D data was essential, which, unfortunately, was not facilitated by available editing and visualization tools. For example, proposing own solution for topological correctness was necessary. 3D analyses are performed in exactly the same way as those in 2D. However, the experience show, that presentation of results for 3D data is impeded and some options available for 2D do not work properly in 3D environment. The pgRouting module is, by default, limited to 2D space. However, the accessibility of source code allowed the authors to make own modifications of particular functions, which enabled moving to 3D. As a database designed for network analyses has to meet specific requirements concerning algorithms to be used, it was necessary to develop it in a multi-step process, which may not be susceptible to automation in each case. Similarly to other database management systems, PostGIS does not offer its own tools for data and results visualization and thus it was necessary to indicate additional software with the needed functionality.

Received 8.01.2017 Accepted 6.09.2017 Published 30.09.2017

Keywords:

3D modelling; spatial database; building interiors; 3D navigation; visualization; routing

Full Text:

PDF (Polish)

References

Cichociński P., Dębińska E., 2012: Badanie dostępności komunikacyjnej wybranej lokalizacji z wykorzystaniem funkcji analiz sieciowych (Accessibility study of a selected location using network analysis functions). Roczniki Geomatyki t. 10, z. 4(54): 41-48, PTIP, Warszawa.

Denis F., 2015: Building Information Modelling – Belgian Guide for the construction Industry. http://www.groupseco.com/sites/default/files/the-guide-to-bim_0.pdf

Dijkstra E.W., 1959: A note on two problems in connexion with graphs. Numerische Mathematik 1: 269-271.

Domínguez B., García Á.L., Feito F.R., 2012: Semiautomatic detection of floor topology from CAD architectural drawings. Computer-Aided Design 44(5): 367-378.

Harris K.M., 2015: Developing a Custom ESRI Facilities Data Model: Whole Building Management Exploring BIM Supported GIS Model. Volume 17, Papers in Resource Analysis. 12pp. Saint Mary’s University of Minnesota Central Services Press. Winona, MN. http://www.gis.smumn.edu/GradProjects/HarrisK.pdf

INSPIRE, 2013: D2.8.III.2 INSPIRE Data Specification on Buildings – Technical Guidelines. http://inspire.ec.europa.eu/file/1533/download?token=ouzQkBuP

Jamali A., Rahman A.A., Boguslawski P., Kumar P., Gold C.M., 2017: An automated 3D modeling of topological indoor navigation network. GeoJournal 82(1): 157-170.

Karas I.R., Batuk F., Akay A.E., Baz I., 2006: Automatically extracting 3D models and network analysis for indoors. [In:] Innovations in 3D Geo Information Systems: 395-404, Springer Berlin Heidelberg.

Klepeis N.E., Nelson W.C., Ott W.R., Robinson J.P., Tsang A.M., Switzer P., Engelmann W.H., 2001: The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11(3): 231-252.

Koo J., Kim Y.S., Kim B., 2012: Estimating the impact of residents with disabilities on the evacuation in a high-rise building: a simulation study. Simulation Modelling Practice and Theory 24: 71-83.

Li X., Hijazi I., Xu M., Lv H., El Meouche R., 2016: Implementing two methods in GIS software for indoor routing: an empirical study. Multimedia Tools and Applications 75(24): 17449-17464.

Open Geospatial Consortium, 2012: OGC City Geography Markup Language (CityGML) Encoding Standard. https://portal.opengeospatial.org/files/?artifact_id=47842

Open Geospatial Consortium, 2016: OGC IndoorGML – with Corrigendum. http://docs.opengeospatial.org/is/14-005r4/14-005r4.html

Parkitny Ł., Lupa M., Materek K., Inglot A., Pałka P., Mazur K., Kozioł K., Chuchro M., 2013: Koncepcja i opracowanie Geoportalu AGH (The concept and development of AGH Geoportal). Roczniki Geomatyki, t. 11, z. 3(60): 79-85, PTIP, Warszawa.

PN-EN 81-73:2006: Przepisy bezpieczeństwa dotyczące budowy i instalowania dźwigów – Szczególne zastosowania dźwigów osobowych i towarowych – Część 73: Funkcjonowanie dźwigów w przypadku pożaru. (Regulations concerning the security of construction and installation of lifts -Particular applications of passenger and freight lifts - Part 73 - Operations of lifts in the case of fire).

Pu S., Zlatanova S., 2005: Evacuation route calculation of inner buildings. [In:] PJM van Oosterom, S Zlatanova & EM Fendel (Eds.), Geo-information for disaster management: 1143-1161, Springer Verlag, Heidelberg.

Słowikowski R., Fijałkowska A., Chmiel J., 2014: System informacji przestrzennej dla wsparcia zarządzania budynkiem uczelni na przykładzie Politechniki Warszawskiej (GIS to support university building management – the case of the Warsaw University of Technology). Roczniki Geomatyki t. 12, z. 4 (66): 437-444, PTIP, Warszawa.

Vanclooster A., Ooms K., Viaene P., Fack V., Van de Weghe N., De Maeyer P., 2014: Evaluating suitability of the least risk path algorithm to support cognitive wayfinding in indoor spaces: an empirical study. Applied Geography 53: 128-140.

Xiong Q., Zhu Q., Du Z., Zlatanova S., Zhang Y., Zhou Y., Li Y., 2017: Free multi-floor indoor space extraction from complex 3D building models. Earth Science Informatics 10(1): 69-83.

Yuan J.P., Fang Z., Wang Y.C., Lo S.M., Wang P., 2009: Integrated network approach of evacuation simulation for large complex buildings. Fire Safety Journal 44(2): 266-275.