Using thematic layers of a classified points cloud in visibility analysis in urban space

Radosław Piskorski
AGH University of Science and Technology in Kraków
Faculty of Mining Surveying and Environmental Engineering
Department of Geoinformation, Photogrammetry and Remote Sensing
Poland

Abstract

The city as a space is made up of many different components: buildings of variable heights and shapes, the multitude of trees’ species and many other objects (bench, street lights, banners etc.). This makes it necessary to take into account the particularities of the preparation of digital surface model used in the visibility analyses. Consideration of presentation of high vegetation (trees) is a particularly important issue in such studies. Although the occurrence of a number of algorithms that allow for the detection of crowns and axes of trees, their presentation allowing for an exact reflection of the perception of reality still creates a big problem. Therefore an approach using ALS data was drawn up for the modelling of trees based on the detection of their axes by searching for local maxima on the high vegetation thematic layer. Thematic layers formed on the basis of a classified points cloud were used to propose and compare two variants of a digital surface model (DSM): the classical DSM presenting trees as crowns and the DSM showing trees as trunks (axes). They were created in order to verify whether the inclusion of non-uniform presentation of trees at a given vertical viewing angle affects the possibility to achieve results closer to the actual mode of human perception. Cracow Błonia was selected as the study area. The main objective of the analysis was to present the complexity of the optimization problem of data analysis in terms of visibility and to demonstrate the potential that lies in the ALS technology, taking into account the urban areas. The results proved the superiority of analysis performed with the use of a combination of ranges of visibility compared to the classical DSM without consideration of diversified nature of trees.

Keywords:

urban; visibility analysis; digital surface model; high vegetation; ALS

Full Text:

PDF (Polish)

References

Bartie P., Mills S., Kingham S., 2008: An Egocentric Urban Viewshed: A Method for Landmark Visibility Mapping for Pedestrian Location Based Services. Geospatial Vision, Part of the series Lecture Notes in Geoinformation and Cartography: 61-85.

Bartie P., Reitsma F., Kingham S., Mills S., 2010: Advancing visibility modeling algorithms for urban environments. Computers, Environment and Urban System 34: 518-531.

Benedikt M.L., 1979: To take hold of space: isovists and isovist fields. Environment and Planning B: Planning and Design 6: 47-65.

Będkowski K., Stereńczak K., 2010: Porównanie numerycznych modeli terenu obszarów leśnych generowanych z wykorzystaniem danych skaningu laserowego (LIDAR) uzyskanych w okresie wiosennym i letnim. Roczniki Geomatyki t. 7, z. 7(43): 11-20, PTIP, Warszawa.

Bhatia S., Chalup S.K., Oswald M.J., 2012: Analyzing architectural space: identifying salient region by computing 3D isovists. Proceedings of the 46th Annual Conference of the Architectural Science Association, ANZAScA 2012 (Gold Coast, Qld 14-16 Listopad, 2012).

Bucior M., Borowiec N., Jędrychowski I., Pyka K., 2006: Wykrywanie budynków na podstawie lotniczego skanowania laserowego. Roczniki Geomatyki t. 5, z. 3: 57-70, PTIP, Warszawa.

Czyńska K., 2015: Application of LIDAR data and 3D-city models in visual impact simulations of tall building. The International Archives of the Photogrammetry, remote Sensing and Spatial Information Sciences vol. XL-7/W3, 36th International Symposium on Remote Sensing of Environment, 11-15 Maj 2015, Berlin.

Fisher-Gewirtzman D., Wagner I.A., 2003: Spatial Opennes as a practical metric for evaluating built-up environments. Environment and Planning B: Planning and Design 30(1): 37-49.

Garnero G., 2015: Visibility analysis in urban spaces: a raster-based approach and case studies. Environment and Planning B: Planning and Design 42: 688-707.

Höfle B., Hollaus M., Hagenauer J., 2012: Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing vol. 67: 134-147.

Kurczyński Z., 2012: Mapa zagrożenia powodziowego i mapy ryzyka powodziowego a dyrektywa powodziowa. Archiwum Fotogrametrii, Kartografii i Teledetekcji vol. 23: 209-217.

Kurczyński Z., Bakuła K., 2013: Generowanie referencyjnego numerycznego modelu terenu o zasięgu krajowym w oparciu o lotnicze skanowanie laserowe w projekcie ISOK. Archiwum Fotogrametrii, Kartografii i Teledetekcji, wydanie specjalne: Geodezyjne Techniki Pomiarowe: 59-68. Warszawa.

Morello E., Ratti C., 2009: A digital image of the city: 3D isovists in Lynch’s urban analysis. Environment and Planning B: Planning and Design 36: 837-853.

Pyysalo U., Oksanen J. & Sarjakoski T., 2009: Viewshed analysis and visualization of landscape voxel models. 24th International Cartographic Conference, Santiago, Chile.

Stereńczak K., Ciesielski M., Zalewska K., 2012: Detekcja budynków na terenach o dużej lesistości na przykładzie parku narodowego Gór Stołowych. Roczniki Geomatyki t. 10, z. 5(55): 67-78, PTIP, Warszawa.

Suleiman W., Joliveau T., Favier E., 2011: 3D urban visibility analysis with vector GIS data. GISRUK 2011, 27-29 kwietnia, University of Portsmouth.

Tandy C.R.V., 1967: The isovist method of landscape survey. Symposium Methods of Landscape Analysis, Londyn.

Tanhuanpää T., Vastaranta M., Kankare V., Holopainen M., Hyyppä J., Hyyppä H., Alho P., Raisio J., 2014: Mapping of urban roadside trees – A case study in tree register update process in Helsinki City. Urban Forestry & Urban Greening vol. 13, issue 3: 562-570.

Van Bilsen A., Stolk E.H., 2007: The potential of isovist-based visibility analysis. Architectural Annual 2005-2006: 68-73, Rotterdam.

Wężyk P. (red), 2015: Podręcznik dla uczestników szkolenia z wykorzystania produktów LiDAR. Warszawa: 12-56, 80-93.

Yang P. P-J., Putra S.Y., Li W., 2007: Viewspehere: a GIS-based 3D visibility analysis for urban design evaluation. Environment and Planning B: Planning and Design 34: 971-992.

Yu X., Litkey P., Hyyppä J., Holopainen M., Vastaranta M., 2014: Assessment of low density full-waveform airborne laser scanning for individual tree detection and tree species classification. Forests 5(5): 1011-1031.