Shadow modelling in urban areas

Michał Brach
Warsaw University of Life Science – SGGW
Faculty of Forestry
Poland

Joanna Stępniak
Warsaw University of Life Science – SGGW
Faculty of Forestry
Poland

Abstract

Light and solar radiation are the factors which have a big impact on the design process of the human environment. Providing proper lighting for open spaces and households requires considering phenomenon of shading. It is particularly important in urban areas, where the high density of housing limits access to sunlight. Nowadays the man can predict place and time of the shadow by using computer tools. This paper presents a shadow modelling method by using data Airborne Laser Scanning data and GIS tools. Simple three dimensions modelling tools were used in order to create virtual buildings models. It was achieved by means of classification of a lidar point cloud and the result of point interpolation expressed by the digital surface model (DSM). A special ArcGIS software application called Sun Shadow Volume was used in order to generate the shadow solid model. The effect of the analysis was the assessment of the impact of buildings on the limiting access to sunlight in selected green sites in Warsaw what was presented in graphical and tabular forms (Fig. 4, Tab. 2). Calculations show that only 11% of the total area meets the requirements of the optimal solar illumination. The results may help to reorganize the land use and land management ways of the analysed areas.

Keywords:

shadow; Geographic Information Systems (GIS); airborne laser scanning

Full Text:

PDF (Polish)

References

Al-Qeeq F., 2008: Passive Solar Urban Design – Shadow Analysis of Different Urban Canyons. An-Najah University Journal for Research vol. 22: 107-140.

Andreou E., 2014: The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean. Renewable Energy 63: 587-596.

Capeluto I., 2010: Design Tools for Solar and Daylight Access in Urban Design. SEUS Solar Energy at Urban Scale. Compiegne, France.

Compagnon R., 2004: Solar and daylight availability in the urban fabric. Energy and Buildings vol. 36: 321-328.

Dapeng L., Gang L., Shengming L., 2015: Solar potential in urban residential buildings. Solar Energy vol. 111: 225-235.

Deroisy B., Deneyer A., 2013: Daylight and solar access at urban scale: a methodology and its application to a high density development in Brussels. CIE Centenary Conference 12-19.04.2013. Paris.

Gröger G., Kolbe T.H., Czerwiński A., Nagel C., 2008: OpenGIS City Geography Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium.

Kurczyński Z., Stojek E., Cisło-Lesicka U., 2015: Zadania GUGiK realizowane w ramach projektu ISOK. Podręcznik dla uczestników szkoleń z wykorzystaniem produktów LIDAR. Główny Urząd Geodezji i Kartografii, Warszawa: 22-56.

Lam J.C., 2000: Shading effects due to nearby buildings and energy implications. Energy Conversion & Management 41(7): 647-659.

Lin T., Matzarakis A., Hwang R., 2010: Shading effect on long-term outdoor thermal comfort. Building and Environment 45: 213-221.

Littlefair P., 2001: Daylight, Sunlight and Solar Gin in the Urban Environment. Solar Energy 70(3): 177-186.

Machnik-Kłusek A., Stojek E., Ujczak A., Zugaj-Macinek D., 2015: Kontrola jakości danych referencyjnych. Podręcznik dla uczestników szkoleń z wykorzystaniem produktów LIDAR. Główny Urząd Geodezji i Kartografii, Warszawa: 132-157.

Morello E., Ratti C., 2009: Sunscapes: ‘Solar envelopes’ and the analysis of urban DEMs. Computers, Enviroment and Urban Systems vol 33: 26-34.

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Dz.U. 2002 nr 75, poz. 690, ze zmianami.

Santamouris N., Papanikplau I., Koronakis I., Assimakopoulos D.N., 1999: Thermal and Air Flow Characteristics in a Deep Pedestrian Canyon and Hot Weather Conditions. Atmospheric Environment 33: 4530-4521.

Shishegar N., 2013: Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons. Journal of Clean Energy Technologies vol. 1(1): 52-56.

Witkowska A., 2012: Określenie zacienienia zabudowy jednorodzinnej na podstawie danych z lotniczego skaningu laserowego. Roczniki Geomatyki t. 10, z. 4(54): 157-164, PTIP, Warszawa.

Witkowska A., Bielecka E., 2014: Wykorzystanie danych z lotniczego skaningu laserowego do analizy nachylenia i ekspozycji dachów w celu montażu kolektorów słonecznych. Biuletyn WAT vol. LXIII, 2: 103-115.