The use of a multilayer perceptron for specifying the landmarks on topographic maps

Krzysztof Pokonieczny
Military University of Technology in Warsaw
Faculty of Land Engineering and Geodesy
Poland

Abstract

The presented article concerns the issue of landmarks selection i.e. solid objects and situational items that may be easily identified in the field.
To specify them the artificial neural networks (a multi-layer perceptron) have been used. The article describes both, how to select the most appropriate neural network architecture and input data (attribute and spatial) which are entered to the network.
The tests have been performed for the area of 4 sheets of the Military Topographic Map at 1:50 000 scale. 4 classes of objects have been analyzed (a chimney, a wayside cross, a monument and an elevation spot). To select the appropriate network architecture the cross-validation has been performed. The learning sample has been divided into 3 parts (one learning, one testing and one validation sample). This allowed to select the top 10 networks. In addition a global sensitivity analysis was conducted, which helped to determine variables with the greatest impact on the results.
Implementation of the network was made based on a test data set, located in the area of the adjacent map sheets. The results showed that the neural network was able to correctly specify a landmark. The highest index was assigned to high, isolated objects, which was in line with the way of teaching the neural network. The usage of a continuous activation function allowed to determine the index in the continuous range 0 to 1.
The spatial data from the Vector Map Level 2 and the Military Topographic Map at 1:50 000 scale have been used for studies described in this article.

Keywords:

artificial neural networks; landmarks; spatial data classification

Full Text:

PDF (Polish)

References

Bagheri Bodaghabadi M., Martinez-Casasnovas J.A., Salehi M.H., Mohammadi J., Esfandiarpoor Borujeni I., Toomanian N., Gandomkar A., 2015: Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes. Pedosphere vol. 25, issue 4: 580-591, DOI: 10.1016/S1002-0160(15)30038-2.

Barski M., Jędruch W., Żuranda J., 1995: Sztuczne sieci neuronowe. Wydawnictwo Naukowe PWN.

Bielecka E., Pokonieczny K., Kaminski P., 2014: Study on spatial distribution of horizontal geodetic control points in rural areas. Acta Geodaetica et Geophysica vol. 49, issue 3: 357-368, DOI: 10.1007/s40328-014-0056-6.

Ćwik J., Mielińczuk J., 2009: Statystyczne systemy uczące się. Ćwiczenia w oparciu o pakiet R. Oficyna Wydawnicza Politechniki Warszawskiej, 192 s., ISBN: 978-83-7207-838-4.

Dzikiewicz B., 1965: Terenoznawstwo. Wydawnictwo Ministerstwa Obrony Narodowej.

Grebby S., Naden J., Cunningham D., Tansey K., 2011: Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sensing of Environment vol.115, issue 1: 214-226, DOI: 10.1016/j.rse.2010.08.019.

Henriques R., Bacao F., Lobo V., 2012: Exploratory geospatial data analysis using the GeoSOM suite. Computers, Environment and Urban Systems vol. 36, issue 3: 218-232, DOI: 10.1016/j.compenvurbsys.2011.11.003.

Kwaśnicka H., Markowska-Kaczmar U., 2005: Sieci neuronowe w zastosowaniach. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.

Lee S., Song KY., Kim Y., Park I., 2012: Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal vol.20, issue 8: 1511-1527, DOI: 10.1007/s10040-012-0894-7.

Łaski W., Stasiewicz H., 1983: Topografia Wojskowa. Wydawnictwo Ministerstwa Obrony Narodowej.

Osowski S., 2013: Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej.

Sztab Generalny WP, 2011: Wojskowa Mapa w skali 1 : 50 000 opracowanie i przygotowanie do wydania – instrukcja.

Suzuki K., 2013: Artificial Neural Networks – Architectures and Applications. ISBN 978-953-51-0935-8, 264 pages, Publisher: InTech, Chapters published January 16, 2013 under CC BY 3.0 license.

Szaleniec M., 2008: Sieci neuronowe i regresja wieloraka czyli jak okiełznać złożoność w badaniach naukowych? Instytut Katalizy i Fizykochemii Powierzchni PAN w Krakowie, StatSoft.

Tablice poglądowe do nauki topografii wojskowej, 2009: Wydawnictwo Sztabu Generalnego WP.

Tadeusiewicz R., 1993: Sieci neuronowe. Akademicka Oficyna Wydawnicza (wyd. I i II z tego samego roku), http://winntbg.bg.agh.edu.pl/skrypty/0001/

Tadeusiewicz R, 2007: Odkrywanie właściwości sieni neuronowych przy użyciu programów w języku C#. Polska Akademia Umiejętności.

Źródła internetowe (dostęp 15.02.2016 r.)

Shuttle Radar Topography Mission. http://srtm.csi.cgiar.org/

ESRI Shapefile Technical Description, ESRI White Paper - July 1998. https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Mapa wektorowa poziomu 2. http://wcg.wp.mil.pl/pl/11.html

Internetowy podręcznik statystyki StatSoft. http://www.statsoft.pl/Programy/Ogolna-charakterystyka/Moduly-analityczne/Automatyczne-sieci-neuronowe