Converting a 2D digital base map to a 3D database for visualisation and spatial analysis of underground utilities

Radosław Mróz
City Hall of the Capital City of Warsaw
Department of Geodesy and Cadastre
Poland

Aleksandra Wiśniewska
ELFEKO S.A
Poland

Anna Fijałkowska
Warsaw University of Technology
Faculty of Geodesy and Cartography
Poland

Abstract

The need to perform 3D spatial analyses, with consideration of elevation co-ordinates, has been occurring with increasing frequency. The INSPIRE guidelines also contain recommendations to store 3D data concerning locations of objects. In the case of the base map such recommendations are of high practical importance, in particular in relation to layers of underground utilities. Breakdowns or damages of underground networks happen very often and it is difficult to design new connections, in particular within the areas characterised by the high level of investments. Therefore, utilisation of tools, which allow to check the designed location of networks, or to eliminate possible conflicts with existing underground objects, is highly justified.
The objective of research works was to test the possibility of 3D visualisation of layers of the digital base map (stored at the Geodetic and Cartographic Documentation Centre – PODGiK in Warszawa) in order to develop the 2D into 3D data conversion model and to automate such data processing. The second part of the paper presents how the 3D database of underground utilities may be used to settle the designed locations of power supply network connections. Selected layers of the base map were used as the input data and the final result was the 3D visualisation of location of particular underground utilities networks.

Keywords:

2D into 3D conversion; underground utilities; 3D spatial analysis

Full Text:

PDF (Polish)

References

Du Y., Zlatanova S., Liu X., 2006: Management and 3D visualisation of pipeline networks using DBMS and AEC software. Proceedings of the ISPRS Commission IV Symposium on Geospatial Databases for Sustainable Development.

He, J., Hu, J., Tang, Q. , Guo, S., 2011: Layout optimization of urban underground pipeline based on 3D digital city. Joint Int. Conf. on Theory, Data Handling and Modelling in GeoSpatial Information Science, International Society for Photogrammetry and Remote Sensing (ISPRS), Vol 38, part II: 279-283, Germany.

Rhoades A., 2014: Improving quality of geolocation of underground utilities at Heathrow. Geospatial World, June 2014, Vol. 4, Issue 11.

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 12 lutego 2013 r. w sprawie bazy danych geodezyjnej ewidencji sieci uzbrojenia terenu, bazy danych obiektów topograficznych oraz mapy zasadniczej. Dz.U. 2013 nr 0 poz. 383.

Rozporządzenie Ministra Gospodarki Przestrzennej i Budownictwa z dnia 21 lutego 1995 r. w sprawie rodzaju i zakresu opracowań geodezyjno-kartograficznych oraz czynności geodezyjnych obowiązujących w budownictwie. Dz.U. 1995 nr 25 poz. 133.

Rozporządzenie Ministra Rozwoju Regionalnego i Budownictwa z dnia 2 kwietnia 2001 r. w sprawie geodezyjnej ewidencji sieci uzbrojenia terenu oraz zespołów uzgadniania dokumentacji projektowej. Dz.U. 2001 nr 38 poz. 455.

Schall G., Junghanns S., Schmalstieg D., 2008: The transcoding pipeline: Automatic generation of 3D models from geospatial data sources. Proceedings of the 1st International Workshop on Trends in Pervasive and Ubiquitous Geotechnology and Geoinformation (TIPUGG 2008), Vol. 23.

Talmaki S. A., Dong S., Kamat V. R., 2010: Geospatial Databases and Augmented Reality Visualization for Improving Safety in Urban Excavation Operations. Construction Research Congress 2010: 91-101.

Ustawa z dnia 17 maja 1989 r. Prawo geodezyjne i kartograficzne. Dz.U. 1989 nr 30 poz. 163 z późn. zm.

Wytyczne eksploatacyjne do projektowania sieci wodociągowej IN-PRO-01, 2014: MPWiK Warszawa, Wydanie 2, 19 s. http://www.mpwik.com.pl/dla-projektanta/wytyczne-eksploatacyjne