Lossless compression method for ASCII UTM format sea survey data obtained from multibeam echosounder

Wojciech Maleika
West Pomerania University of Technology Szczecin
Faculty of Computer Science and Information Technology
Poland

Piotr Czapiewski
West Pomerania University of Technology Szczecin
Faculty of Computer Science and Information Technology
Poland

Abstract

Data gathered through seabed surveys performed using multibeam echosounder tend to be significant in size. Quite often a single measurement session leads to obtaining even several million distinct points (usually in x, y, z format). These data are saved in files (often text files), where x, y represent the location of a point (in geographical format, or more commonly in UTM format) and z represents the measured depth at the respective point. Due to the huge amount of such points, the data occupy a significant space in memory or in storage system (the order of megabytes for small areas and of gigabytes for larger ones). The paper contains a survey of existing methods of compressing ASCII UTM files and a proposal of a novel method tailored for a particular data structure. As a result of utilising differential coding and coding using varying length values, the size of such files can be diminished by a factor exceeding ten, while preserving the full information. The paper presents a detailed description of the proposed algorithm and experimental results using real data.

Keywords:

multibeam echosounder (MBES); bathymetry; sea survey; UTM coordinate system; data compression; differential coding

Full Text:

PDF (Polish)

References

Borkowski P., 2012: Data fusion in a navigational decision support system on a sea-going vessel. Polish Maritime Research vol. 19, no. 4(76): 78-85.

Chybicki A., Łubniewski Z., Moszyński M., 2010: Using wavelet techniques for multibeam sonar bathymetry data compression. Hydroacoustics vol. 13, no. 3: 31-38.

Cormack G.V, Horspool N.N., 1984: Algorithms for adaptive Huffman codes. Information Processing Letters vol.18, no..3: 159-165.

Grabmayer C., Endrullis J., Hendriks D., Klop J.W., Moss L.S., 2012: Automatic Sequences and Zip-Specifications. 27th Annual ACM/IEEE Symposium On Logic In Computer Science (LICS), Book Series: IEEE Symposium on Logic in Computer Science: 335-344, DOI: 10.1109/LICS.2012.44.

Herzfeld U.C., Matassa M.S., Mimler M., 1999: A program for matching universal transverse mercator (UTM) and geographic coordinates. Computers & Geosciences vol.25, no. 7: 765-773, DOI: 10.1016/S0098-3004(99)00020-5.

Łubczonek J., 2006: Analiza porównawcza metod modelowania powierzchni w aspekcie opracowania numerycznego modelu dna morskiego. Roczniki Geomatyki t. 4, z. 3: 151-163, PTIP Warszawa.

Maleika W., Czapiewski P., 2013: Visualisation of multibeam echosounder measurement data. [W:] Maji P. et al. (Eds.) Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science vol. 8251: 373–380, Springer-Verlag, Berlin Heidelberg.

Maleika W., 2013: The influence of track configuration and multibeam echosounder parameters on the accuracy of seabed DTMs obtained in shallow water. Earth Science Informatics 6: 47-69, DOI 10.1007/s12145-013-0111-9.

Moszyński M., Chybicki A., Kulawiak M., Łubniewski Z., 2013: A novel method for archiving multibeam sonar data with emphasis on efficient record size reduction and storage. Polish Maritime Research no. 1 (77), vol. 20.

Stateczny A., Grodzicki P., Włodarczyk M., 2010: Badanie wpływu parametrów filtracji geodanych pozyskiwanych wielowiązkową sondą interferometryczną GeoSwath+ na wynik modelowania powierzchni dna. Roczniki Geomatyki t. 8, z. 5: 121-130, PTIP Warszawa.

Stephens D., Diesing M., 2014: A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PloS ONE vol. 9, no. 4.

Ziv J., Lempel A., 1977: Universal Algorithm for Sequential Data Compression, IEEE Transactions on Information Theory vol.23, no. 3: 337-343.