The influence of flow routing algorithm on the results of RUSLE-based catchment-wide erosion risk assessment

Wojciech Drzewiecki
AGH University of Science and Technology, Krakow
Faculty of Mining Surveying and Environmental Engineering
Poland

Sebastian Ziętara
AGH University of Science and Technology, Krakow
Faculty of Mining Surveying and Environmental Engineering
Poland

Abstract

The objective of the presented research was to evaluate the influence of flow routing algorithm on RUSLE-based soil erosion assessment on catchment scale. Both, the amount of soil loss and the pattern of erosion risk classes were compared. Seven flow routing algorithms were tested: D8, Rho8, Kinematic Routing, DEMON, D, Multiply Flow Direction (MFD) and Triangular Multiply Flow Direction (MD).
Based on the results achieved, we can conclude that the choice of flow routing algorithm influences the soil erosion risk assessment. Particular approaches gave similar results when total area of endangered soils in the catchment was considered. However, the patterns of erosion differ. Multiple-direction algorithms (especially DEMON) seem to be better suited for water erosion studies.

Keywords:

water erosion; RUSLE; flow routing; sensitivity assessment

Full Text:

PDF (Polish)

References

Biesemans, J., Van Meirvenne, M., Gabriels, D., 2000: Extending the RUSLE with the Monte Carlo error propagation technique to predict long-term average off-site sediment accumulation. Journal of Soil andWater Conservation, 55 (1): 35-42.

Beven K. J., Brazier R. E., 2011: Dealing with Uncertainty in Erosion Model Predictions. [In:] Morgan R.P.C. and Nearing M.A. (eds.) Handbook of Erosion Modelling, Wiley-Blackwell: 52-79.

Cohen, J., 1960: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 (1): 37-46.

Costa-Cabral M., S. J. Burges, 1994: Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30: 1681-1692.

Desmet P. J., Govers G., 1996a: Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems, 10: 311-331.

Desmet P. J., Govers G., 1996b: A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of Soil and Water Conservation, 51: 427-433.

Drzewiecki W., 2010: Badanie zmian przestrzennych struktury użytkowania i funkcji krajobrazu w oparciu o wieloczasowe obrazy teledetekcyjne jako wsparcie dla planowania krajobrazu. Sprawozdanie merytoryczne z projektu badawczego MNiSW nr N526 029 32/2621. Katedra Geoinformacji, Fotogrametrii i Teledetekcji Środowiska, Wydział Geodezji Górniczej i Inżynierii Środowiska, AGH w Krakowie. Maszynopis.

Drzewiecki W., Mularz S., 2001: Modelowanie erozji wodnej gleb z wykorzystaniem GIS. [W:] Nowoczesne technologie w geodezji i inżynierii środowiska: konferencja naukowa z okazji jubileuszu 50-lecia Wydziału Geodezji Górniczej i Inżynierii Środowiska, AGH, Kraków: 169-186.

Drzewiecki W., Mularz S., 2008: Simulation of water soil erosion effects on sediment delivery to Dobczyce Reservoir. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII B8: 787-794.

Drzewiecki W., Mularz S., Twardy S., Kopacz M., 2008: Próba kalibracji modelu RUSLE/SDR dla oceny ładunku zawiesiny wprowadzanego do zbiornika Dobczyckiego ze zlewni bezpośredniej. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 18: 83-98.

Drzewiecki W., Wężyk P., Pierzchalski M., Szafrańska B., 2013: Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure and Applied Geophysics, DOI:10.1007/s00024-013-0669-7.

Erskine R. H., Green T. R., Ramirez J. A., MacDonald L. H., 2006: Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research, 42, doi:10.1029/2005WR004648.

Fairfield, J., Leymarie P., 1991: Drainage networks from grid digital elevation model. Water Resources Research, 27(5): 709-717.

Freeman G.T., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17: 413-422.

Józefaciuk A., Józefaciuk Cz., 1996: Mechanizm i wskazówki metodyczne badania procesów erozji. Biblioteka Monitoringu Środowiska, PIOŚ, Warszawa.

Kondracki J., 1988: Geografia fizyczna Polski. PWN, Warszawa.

Kulas G., 2011: Wpływ zmian pokrycia i użytkowania terenu w zlewniach Prądnika i Dłubni na zagrożenie gleb erozją wodną. Praca magisterska. Wydział Geodezji Górniczej i Inżynierii Środowiska, AGH w Krakowie.

Lea N. L., 1992: An aspect driven kinematic routing algorithm, [In:] Parsons A.J., and Abrahams A.D. (eds.) Overland Flow: Hydraulics and Erosion Mechanics, Chapman and Hall, New York: 147-175.

Licznar P., 2004: Prognozowanie erozyjności deszczy w Polsce na podstawie miesięcznych sum opadów. Archiwum Ochrony Środowiska,30 (4): 29 -39.

Mendicino G., 1999: Sensitivity Analysis on GIS Procedures for the Estimate of Soil Erosion Risk. Natural Hazards, 20: 231-253.

O'Callaghan J.F., Mark D.M., 1984: The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28: 323-344.

Quinn P.F., Beven K.J., Chevallier P., Planchon O., 1991: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain model. Hydrological Processes, 5: 59-79.

Prasuhn V., Liniger H., Gisler S., Herweg K., Candinas A., Clément J.P., 2013: A highresolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy, 32: 281-291.

Renard K. G., Foster G. R., Weesies G. A., McCool D. K., Yoder D. C. 1997: Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No. 703.

Risse L. M., Nearing M. A., Nicks A. D., Laflen J. M., 1993: Error assessment in the Universal Soil Loss Equation. Soil Science Society of America Journal, 57: 825-833.

Seibert J., McGlynn B.L., 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 43, doi:10.1029/2006WR005128.

Stuczyński T., Koza P., .Łopatka A., Duer I., Jadczyszyn J., 2010: Raport z analizy wskaźników produktu, rezultatu i oddziaływania określonych dla osi 2 PROW 2007-2013 oraz wybranych pytań oceniających zawartych w podręczniku wspólnych ram monitorowania i oceny . Wytyczne (CMEF) wraz z określeniem źródeł i dostępności danych. IUNG-PIB, Puławy. www.minrol.gov.pl/pol/content/download/28450/158380/file/Rap_z_analizy_wskaznikow.pdf

Tarboton, D.G., 1997: A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33 (2): 309-319.

Tetzlaff B., Friedrich K., Vorderbrügge T., Vereecken H., Wendland F., 2013: Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. Catena, 102: 13-20.

Wawer R., Nowocień E., Podolski B., 2005: Real and Calculated K USLE Erodibility Factor for Selected Polish Soils. Polish Journal of Environmental Studies, 14 (5): 655-658.

Wischmeier W. H., Smith D.D. 1978: Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. USDA Handbook 537, Washington, D. C.