Modelling population density using artificial neural networks from open data
Abstract
the work done so far. The unit of reference in the study is more the population density of a location
rather than tracking human movements and habits. Heterogeneous open data, which can be
obtained from the World Wide Web, was adopted for the analysis. Commercial telephony data or
social networking applications were intentionally omitted. Both for data collection and later for
modeling the potential of artificial neural networks was used. The potential of detection models such
as YOLO or ResNet was explored. It was decided to focus on a method of acquiring additional data
using information extraction from images and extracting information from web pages. The BDOT
database and statistical data from the Central Statistical Office (polish: GUS) were adopted for the
base model. It was shown that the use of street surveillance cameras in combination with deep
learning methods gives an exam.
Keywords:
Full Text:
PDF (Polish)References
Adamec, V., Herman, D., Schullerova, B., & Urbanek, M. (2019). Modelling of Traffic Load by the
DataFromSky System in the Smart City Concept. Smart Governance for Cities: Perspectives and
Experiences EAI/Springer Innovations in Communication and Computing,135-152.
doi:10.1007/978-3-030-22070-9_7
Chen, P., Hsieh, J., Gochoo, M., Wang, C., & Liao, H. M. (2019). Smaller Object Detection for
Real-Time Embedded Traffic Flow Estimation Using Fish-Eye Cameras. 2019 IEEE
International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803719
Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T., Abba, S., Vojtek, M., . . . Khoi, D. N. (2019).
Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine
Learning Supported by Remote Sensing and GIS Techniques. Remote Sensing,12(1), 106.
doi:10.3390/rs12010106
Kong, X., Xia, F., Wang, J., Rahim, A., & Das, S. K. (2017). Time-Location-Relationship Combined
Service Recommendation Based on Taxi Trajectory Data. IEEE Transactions on Industrial
Informatics,13(3), 1202-1212. doi:10.1109/tii.2017.2684163
Kong, X., Li, M., Li, J., Tian, K., Hu, X., & Xia, F. (2018). CoPFun: An urban co-occurrence pattern
mining scheme based on regional function discovery. World Wide Web,22(3), 1029-1054.
doi:10.1007/s11280-018-0578-x
Liao, Y., Yeh, S., & Gil, J. (2021). Feasibility of estimating travel demand using geolocations of
social media data. Transportation. doi:10.1007/s11116-021-10171-x
Panphattarasap, P., & Calway, A. (2018). Automated Map Reading: Image Based Localisation in 2-
D Maps Using Binary Semantic Descriptors. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). doi:10.1109/iros.2018.8594253
Pham, B. T., Phong, T. V., Nguyen-Thoi, T., Trinh, P. T., Tran, Q. C., Ho, L. S., . . . Prakash, I.
(2020). GIS-based ensemble soft computing models for landslide susceptibility mapping.
Advances in Space Research,66(6), 1303-1320. doi:10.1016/j.asr.2020.05.016
Pham, Q. B., Abba, S. I., Usman, A. G., Linh, N. T., Gupta, V., Malik, A., . . . Tri, D. Q. (2019).
Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water
Resources Management,33(15), 5067-5087. doi:10.1007/s11269-019-02408-3Qin, Z., Li, Z., Zhang, Z., Bao, Y., Yu, G., Peng, Y., & Sun, J. (2019). ThunderNet: Towards Real-
Time Generic Object Detection on Mobile Devices. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). doi:10.1109/iccv.2019.00682
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized
Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2019.00075
Sachdeva, S., Bhatia, T., & Verma, A. K. (2019). A novel voting ensemble model for spatial
prediction of landslides using GIS. International Journal of Remote Sensing,41(3), 929-952.
doi:10.1080/01431161.2019.1654141
Sassi, A., Brahimi, M., Bechkit, W., & Bachir, A. (2019). Location Embedding and Deep
Convolutional Neural Networks for Next Location Prediction. 2019 IEEE 44th LCN Symposium
on Emerging Topics in Networking (LCN Symposium).
doi:10.1109/lcnsymposium47956.2019.9000680
Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel
forecasting approaches using combination of machine learning and statistical models for flood
susceptibility mapping. Journal of Environmental Management,217, 1-11.
doi:10.1016/j.jenvman.2018.03.089
Smolak, K., Rohm, W., Knop, K., & Siła-Nowicka, K. (2020). Population mobility modelling for
mobility data simulation. Computers, Environment and Urban Systems,84, 101526.
doi:10.1016/j.compenvurbsys.2020.101526
Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Siła-Nowicka, K., & Kopańczyk, K. (2020).
Applying human mobility and water consumption data for short-term water demand forecasting
using classical and machine learning models. Urban Water Journal,17(1), 32-42.
doi:10.1080/1573062x.2020.1734947
Tang, K., Paluri, M., Fei-Fei, L., Fergus, R., & Bourdev, L. (2015). Improving Image Classification
with Location Context. 2015 IEEE International Conference on Computer Vision (ICCV).
doi:10.1109/iccv.2015.121
Tenerelli, P., Gallego, J. F., & Ehrlich, D. (2015). Population density modelling in support of disaster
risk assessment. International Journal of Disaster Risk Reduction,13, 334-341.
doi:10.1016/j.ijdrr.2015.07.015
Tsubouchi, K., Kobayashi, H., & Shimizu, T. (2020). POI Atmosphere Categorization Using Web
Search Session Behavior. Proceedings of the 28th International Conference on Advances in
Geographic Information Systems. doi:10.1145/3397536.3422196
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2021). Scaled-YOLOv4: Scaling Cross Stage
Partial Network. arXiv [cs.CV]. Opgehaal van http://arxiv.org/abs/2011.08036
Wang, J., Kong, X., Xia, F., & Sun, L. (2019). Urban Human Mobility. ACM SIGKDD Explorations
Newsletter,21(1), 1-19. doi:10.1145/3331651.3331653
Xia, F., Liu, L., Li, J., Ahmed, A. M., Yang, L. T., & Ma, J. (2015). BEEINFO: Interest-Based
Forwarding Using Artificial Bee Colony for Socially Aware Networking. IEEE Transactions on
Vehicular Technology,64(3), 1188-1200. doi:10.1109/tvt.2014.2305192
Xia, F., Liu, L., Jedari, B., & Das, S. K. (2016). PIS: A Multi-Dimensional Routing Protocol for
Socially-Aware Networking. IEEE Transactions on Mobile Computing,15(11), 2825-2836.
doi:10.1109/tmc.2016.2517649
Yang, Q., Wang, J., Song, X., Kong, X., Xu, Z., & Zhang, B. (2015). Urban Traffic Congestion
Prediction Using Floating Car Trajectory Data. Algorithms and Architectures for Parallel
Processing Lecture Notes in Computer Science,18-30. doi:10.1007/978-3-319-27122-4_2
Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y., & Choe, J. (2019). CutMix: Regularization Strategy
to Train Strong Classifiers With Localizable Features. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). doi:10.1109/iccv.2019.00612
Zheng, Y. (2015). Trajectory Data Mining. ACM Transactions on Intelligent Systems and
Technology,6(3), 1-41. doi:10.1145/2743025
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2019, November 19). Distance-IoU Loss:
Faster and Better Learning for Bounding Box Regression. Retrieved from
https://arxiv.org/abs/1911.08287