
289LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...POLSKIE TOWARZYSTWO INFORMACJI PRZESTRZENNEJ
ROCZNIKI GEOMATYKI 2014 m TOM XII m ZESZYT 3(65): 289�301

LOSSLESS COMPRESSION METHOD
FOR ASCII UTM FORMAT SEA SURVEY DATA

OBTAINED FROM MULTIBEAM ECHOSOUNDER

OPRACOWANIE BEZSTRATNEJ METODY KOMPRESJI
DANYCH SONDA¯OWYCH

POCHODZ¥CYCH Z SONDY WIELOWI¥ZKOWEJ
ZAPISANYCH W FORMACIE ASCII UTM

Wojciech Maleika, Piotr Czapiewski

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydzia³ Informatyki

Keywords: multibeam echosounder (MBES), bathymetry, sea survey, UTM coordinate system,
data compression, differential coding
S³owa kluczowe: echosonda wielowi¹zkowa (MBES), batymetria, sonda¿ morski, system UTM,
kompresja danych, kodowanie ró¿nicowe

Introduction

Contemporary hydrographic measurements increasingly often produce immense amo-
unts of measurement data, which are postprocessed using specialised software. The measu-
rement devices used during sea surveys, such as multibeam echosounders, perform reado-
uts of millions of points during one survey (Maleika, Czapiewski, 2013). Due to the huge
amount of acquired data we are able to create very accurate seabed models (DTM) (Ste-
phens, Dusing, 2014).

Based on gathered measurement data Digital Terrain Models (DTM) are created, which
form the basis for further processing, creating maps or seabed formation visualisation (Bor-
kowski, 2012; Maleika, 2013). Nevertheless, the source data (measurement data) is often
saved to mass storage in order to allow for future creation of new models (e.g. with different
parameters) (Chybicki et al., 2010; £ubczonek, 2006; Stateczny et. al., 2010; Moszyñski et
al., 2013).

Developers of hydrographic software usually save such data in ASCII files, which start
with a header describing survey parameters, followed by subsequent measurement points in x,
y, z format (x, y � point location, e.g. in UTM format, z � depth value measured at the respec-
tive point) (Herzfeld et al., 1999). Exemplary fragment of such a file is presented in Figure 1.

290 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

*** Neptune Ascii file from Kongsberg Simrad A/S ***
Survey name: Dok_5_ZUT_6
Processing operator name: b.u.
Datum: WGS84
Half axis: 6378137.0000000
Flattening: 1/298.25722356300
Coordinate system: utm
Y min.: 5923098.14
X min.: 473086.42
Y max.: 5923492.77
X max.: 473399.28
Latitude cell size: 0.50 meter
Longitude cell size: 0.50 meter
All points, Vert. error

 456397.403970 5962579.781657 -7.930000
456397.570143 5962579.947004 -7.680000
456397.975283 5962580.315961 -7.380000
456397.288511 5962581.085974 -11.360000
456397.012521 5962581.752367 -11.470000
456397.154572 5962580.685425 -11.560000
456397.189005 5962580.078541 -11.380000
456397.254514 5962580.745847 -11.250000

Figure 1. Fragment of measurement data file created using Neptun application by Kongsberg Simrad

As a result of storing millions of measurement points, such files reach significant sizes.
For example, one of test files used in experiments, called gate.utm, consists of 3 812 445
rows, and its total size is 167 747 688 (approximately 160 MB). Each measurement point is
stored therein using 44 bytes.

Data file analysis

Closer analysis of source data files brings the conclusion, that a significant information
redundancy occurs therein. It can be noted, that:
m data is stored as text;
m each row contains coordinates of a single point;
m each point consists of:

� a number representing the distance (in metres) north of the base point of UTM zone;
� the distance (in metres) east of the base point of UTM zone;
� the depth in meters;

m the numbers describing the location are stored in fixed point format with six fractional digits;
m the depth is stored with two fractional digits, but the number is zero-padded to full six-

digits length (additional 4 zeros).
The Universal Transverse Mercator (UTM) projected coordinate system uses a 2-dimen-

sional Cartesian coordinate system to give locations on the surface of the Earth. It is a
horizontal position representation, i.e. it is used to identify locations on the Earth independen-
tly of vertical position, but differs from the traditional method of latitude and longitude in
several respects.

Given that the horizontal accuracy of highest class measurement devices, and consequ-
ently the accuracy of stored point locations, can reach several centimetres at best, storing

291LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

the coordinates with 6 digit precision
(i.e. 0.0001mm) is pointless. The in-
formation on point locations does not
get more accurate, and the data redun-
dancy is significant. Taking the pro-
blems characteristics into account (me-
asurements and creation of DTMs)
storing the location with the precision
of 1 mm (i.e. two fractional digits) should be considered sufficient, and removing digits at
further decimal places should not lead to any information loss. Accordingly, when saving
depth data it should be sufficient to store up to 2 fractional digits (precision of 1 cm), as this
is the accuracy expected from measurement devices. Removing trailing zeroes does not
change the accuracy of stored depth information.

Utilising conventional lossless compression algorithms for such data files should bring a
high compression ratio (the file contains mostly digits, including many repeating ones), howe-
ver the specific structure reorganisation and removing redundant data might result in further
increase of compression ratio, while still keeping computation time at a reasonable level.

In the following experiments 4 measurement data files were processed (measurements
were performed by Maritime Office in Szczecin using Simrad EM3000 echosounder). Table
1 presents basic characteristics of these test files.

In case of ASCII files the information on measurement points locations is not always
stored in UTM format, also the format utilizing geographical coordinates is quite often used
(in various combinations using degrees, minutes and seconds). The method presented in this
paper might be easily adopted for the compression of such a type of data, or of any other
data stored in ASCII format complying with the following general pattern: position_x,
position_y, depth. The benefits coming from application of the method (the compression
ratio) should be similar.

Data reduction methods

Data reduction by discarding redundant information

As described in section �Data file analysis�, data files under consideration often contain
redundant information. Storing the location with 6 fractional digits or the depth with additio-
nal trailing zeroes seems pointless. Those superfluous data is probably a result of utilizing
high precision variables in data processing algorithms implementations (including interpola-
tion), which are later on saved to data files with full precision. Figure 2 presents the file
contents before and after discarding redundant data.

Figure 2.
Fragment

of data file
contents before (left)

and after (right)
discarding

redundant data

����������������������������������í���������

����������������������������������í���������

����������������������������������í���������

���������������������������������í����������

���������������������������������í����������

���������������������������������í����������

���������������������������������í����������

���������������������������������í����������

� ����������������������������í�����

����������������������������í�����

����������������������������í�����

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

Table 1. Basic characteristics of test data files

emaN]setyb[eziseliF stniopfooN epyteliF

egarohcnA 232213696 87252851 MTUIICSA

gnigniwS 697082661 9019773 MTUIICSA

etaG 678502451 9764053 MTUIICSA

skcerW 0454784 587011 MTUIICSA

292 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

As a result of such a sim-
ple procedure, without any
information loss the compres-
sion factor of 77% is obtained
(each measurement takes up
34 bytes instead of 44). The
results of such a compression
of test data files are presented
in Table 2.

Various hydrographic so-
ftware stores data in ASCII files in a different way (with varying precision / fractional digits
number). One should aim at such an information storing scheme, that results in storing
location and depth with 1 mm and 1 cm precision respectively.

Data conversion to binary format

Plain text format is readable for the user, however, from computer�s perspective opera-
ting on data stored as text is highly ineffective � each time the data is loaded, the software
needs to convert text into a number. By storing binary data we utilize computer memory
more effectively and we gain faster access to particular measurement points, which transla-
tes into faster file processing operations. The data file itself, due to a much more effective
saving format, is significantly smaller in size.

When storing binary data, the following floating point types should be used: double preci-
sion number to describe the location (two 64-bit numbers) and single precision number to
describe the depth (one 32-bit number). In such case a single measurement point takes up 20
bytes. Figure 3 presents the data file contents before and after saving in binary format.

Table 2. Compression ratio for test data files
(discarding redundant data)

emaN
]setyb[

eziselifecruoS eziselifdesserpmoC
]setyb[

noisserpmoC
]%[oitar

egarohcnA 232213696 254950835 3,77

gnigniwS 697082661 607984821 3,77

etaG 678502451 680951911 3,77

skcerW 0454784 0966673 3,77

����������������������������í�����

����������������������������í�����

����������������������������í�����

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

Figure 3.
The contents
of an ASCII file
(left)
and a binary file
(right)

As it turns out, storing the data in question in a binary format allows to obtain a compression
ratio of 45%. The results of such a compression of test data files are presented in Table 3.

Storing measurement data
in binary files is highly advisa-
ble (many software packages
offer such a functionality), and
using ASCII files can be justi-
fied for import/export betwe-
en heterogeneous software.

It should be noted, that
many hydrographic software

Table 3. Compression ratio for test data files (binary format)

emaN eziselifecruoS
]setyb[

eziselifdesserpmoC
]setyb[

noisserpmoC
]%[oitar

egarohcnA 232213696 065505613 5.54

gnigniwS 697082661 08128557 5.54

etaG 678502451 08539007 5.54

skcerW 0454784 0075122 5.54

293LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

packages offer the possibility to store data in several binary formats, such as ALL, GMT
GRD / NetCDF, Etopo2 and 5, USGS DEM, CARIS HDCS, SHOALS, HTF and others. The
vendors not always provide a detailed description of a given data format, however, it can be
safely assumed, that those formats consists of binary entries with the location and depth of
subsequent measurement points (possibly along with some additional information). The be-
nefits stemming from utilizing such binary storage formats should be similar to those descri-
bed above (the compression factor of approximately 2). The authors have not come across
any reference (in scientific literature or in official brochures from hardware/software ven-
dors) to using the differential coding in any format describing MBES data, which is a major
contribution of this paper. It is most probable, that many of the existing binary formats might
be modified using the above described algorithms, leading to achieving similar benefits (com-
pression ratio). It would however require to develop a separate algorithm for each of those
formats.

Furthermore, certain data formats exist, that store significantly broader scope of measu-
rement information. For example, the s7k format (a record-based data format defined for
data logging and network transmission for use, in part, with the SeaBat� 7k systems) stores
the data in records of various types. Those records may contain the information on sonar
setup, geometry, seabed detection, image from a side scanner, bathymetry data and others.
The development of a compression method for such data would require a different approach
for each of the data formats.

Data compression using LZW algorithm

Given the characteristics of ASCII UTM data files and of binary data files storing the
same kind of information, it should be expected, that a significant compression ratio can be
achieved using known lossless compression methods, e.g. LZW algorithm (Ziv, Lempel,
1977). In order to verify this hypothesis, the test files were compressed using the most
popular ZIP software, which performs lossless compression based on LZW algorithm (Grab-
mayer et al., 2012). The results of the experiment, including compression ratio and proces-
sing time, are presented in Table 4.

Over five times decrease in size could be considered satisfactory in many cases. The
LZW algorithm efficiently detects and compresses repeating digits and spaces in case of
ASCII files or repeating number values in case of binary files (unused bytes in floating point
format). It should be noted, that ASCII files can be compressed better than binary files, but
at the expense of approximately twice the computation time.

Table 4. Compression ratio and processing time for test files compressed using ZIP software

emaN eziselifecruoS
]setyb[

IICSAdesserpmoC
]setyb[eziselif

]%[oitarnoisserpmoC
]s[emitdna

yranibdesserpmoC
]setyb[eziselif

]%[oitarnoisserpmoC
]s[emitdna

egarohcnA 232213696 07242898)0201(9.21 431524721)064(3.81

gnigniwS 697082661 49979592)052(8.71 89532923)311(8.91

etaG 678502451 44172842)732(1.61 92335492)39(1.91

skcerW 0454784 128985)8(1.21 297109)3(5.81

294 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

Differential data coding using varying byte length

The next step of research consisted in examining the possibility of achieving even higher
compression factor by introducing a specific reorganisation of data file, including differential
coding of subsequent location and depth values. Differential coding allows for a more effec-
tive utilisation of memory and a significant diminishing of file size, hence the differences
between subsequent measurement points may be stored using smaller number of bytes. Here
we propose the following approach:
m In the first stage fixed point numbers are converted to integer numbers by removing

the decimal point (or more formally: by multiplying location values by 100 and depth
values by 10), which is presented in Figure 4.

Figure 4. Data file
contents before (left)
and after the conversion
of real numbers to
integers (right)

����������������������������í�����

����������������������������í�����

����������������������������í�����

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

� ��������������������������í����

��������������������������í����

��������������������������í����

�������������������������í�����

�������������������������í�����

�������������������������í�����

�������������������������í�����

�������������������������í�����

m In the second stage all the rows after the first one are converted as follows: the
difference between the current and previous row values is calculated and stored inste-
ad of the actual value (separately for x, y, z). The result of this step is illustrated in
Figure 5.

Figure 5. Data file
contents before (left)
and after the differential
coding (right)

����������������������������í�����

����������������������������í�����

����������������������������í�����

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

���������������������������í������

� ��������������������������í����

����� ������� �������

����� ������� ������

����� ������� �����

����� ������� ������

����� ������ ������

������ ������� ������

������ ������� ������

m In the third stage the values of subsequent measurements are additionally encoded.
Since most of the values are small, it could be beneficial to use a technique of storing
the numbers using variables of varying length. Obviously, the information about the
actually used number of bytes must be appended. For this purpose Variable Length
Value Coding method (Cormack, Horspool, 1984] was utilised. Each VLV value is
stored in bytes, whereas each byte contains two portions: 7 bits contain the actual
information and 1 bit denotes continuation. If the most significant bit (continuation
bit) is set, then the number is continued in the next byte. Otherwise, this is the last
byte of a number. In order to encode a number in VLV, it needs to be divided into 7-bit
long groups; then each group is appended with the continuation bit. In such case all
the numbers within the range <-63; 64> are stored using one byte, numbers within the
range <-16383; 16384> using two bytes, and so on. In order to retrieve a number
encoded using VLV, the continuation bit must be removed, remaining bits must be
concatenated to the number being formed, until the final byte is encountered.

295LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

Storing the numbers using Variable Length Value Coding leads to a significant decrease in
data file sizes. Table 5 presents a comparison of raw data structure size and after VLV
encoding.

 Table 5. Data structure size when using VLV technique

ataD IICSA MTU
]setyb[

elifyraniB
]setyb[

gnidoCeulaVhtgneLelbairaV
]setyb[

xetanidrooC 82~ 8)eraryrev(8>,)erar(8-4,)tneuqerf(3-1

yetanidrooC 82~ 8)eraryrev(8>,)erar(8-4,)tneuqerf(3-1

zhtpeD 11-01~ 4)eraryrev(4>,)erar(4-3,)tneuqerf(2-1

Below the algorithm is presented developed for the purpose of ASCII UTM files com-
pression by differential encoding and VLV coding.

IN:Source file in, OUT destination file out
1: procedure EncodeFile(in, out)
. Read floating point numbers
2: in.read(X);
3: in.read(Y);
4: in.read(Z);
. Stage I: Convert to integer numbers and truncate
5: X ¬ b X · 1000 c;
6: Y ¬ b Y · 1000 c;
7: Z ¬ b Z · 100 c;
8: First X ¬ X;
9: First Y ¬ Y;
. Create temporary values
10: First Z ¬ Z;
. Stage II: calculate and store the differences
11: while in.eof() = false do . Until the end of file is reached
12: in.read(Nx);
13: in.read(Ny);
14: in.read(Nz);
15: Nx ¬ b Nx · 1000 c;
16: Ny ¬ b Ny · 1000 c;
17: Nz ¬ b Nz · 100 c;
. Add the differences diff x, diff y, diff z to the array
18: differences.add(Nx - X, Ny - Y, Nz - Z);
19: X ¬ Nx;
20: Y ¬ Ny;
21: Z ¬ Nz;
22: end while
. How many bytes are required for the first difference, for each variable
23: diff size x ¬ GetDiffSize(differences[0].diff x);
24: diff size y ¬ GetDiffSize(differences[0].diff y);
25: diff size z ¬ GetDiffSize(differences[0].diff z);
26: num x ¬ 0; . Counters for the respective differences
27: num y ¬ 0;
28: num z ¬ 0;
. Stage III: count the differences with respect to the number of bytes and store them
29: for i ¬ 1 to differences.size -1 do
30: num x ¬ num x + 1;
31: num y ¬ num y + 1;
32: num z ¬ num z + 1;
. Does the difference fit into the given number of bytes?

296 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

. Can it be stored using less bytes?
33: if CheckDiffSize(diff size x, differences[i].diff x) = true then
. Store information on differences sizes and count into the array
34: encode x.add(diff size x, num x);
35: num x ¬ 0;
36: diff size x ¬ GetDiffSize(differences[i].diff x);
37: end if
38: if CheckDiffSize(diff size y, differences[i].diff y) = true then
39: encode y.add(diff size y, num y);
40: num y ¬ 0;
41: diff size y ¬ GetDiffSize(differences[i].diff y);
42: end if
43: if CheckDiffSize(diff size z, differences[i].diff z) = true then
44: encode z.add(diff size z, num z);
45: num z ¬ 0;
46: diff size z ¬ GetDiffSize(differences[i].diff z);
47: end if
48: end for
49: encode x.add(diff size x, num x + 1);
50: encode y.add(diff size y, num y + 1);
51: encode z.add(diff size z, num z + 1);
. Save the first values to a file in binary format
52: out.write(differences.size, 4);
53: out.write(First X, 8);
54: out.write(First Y, 8);
55: out.write(First Z, 8);
56: diff x ¬ 0;
57: diff y ¬ 0;
58: diff z ¬ 0;
59: num x ¬ 0;
60: num y ¬ 0;
61: num z ¬ 0;
. Iterators for respective arrays
62: for i ¬ 0 to differences.size -1 do
63: if num x = 0 then . Get the count of differences and size
64: diff size x ¬ encode x[diff x].bytes required;
65: num x ¬ encode x[diff x].num of elements;
66: diff x ¬ diff x + 1;
67: SaveVLV(out, diff size x, num x);
68: end if
69: if num y = 0 then
70: diff size y ¬ encode y[diff y].bytes required;
71: num y ¬ encode y[diff y].num of elements;
72: diff y ¬ diff y + 1;
73: SaveVLV(out, diff size y, num y);
74: end if
75: if num z = 0 then
76: diff size z ¬ encode z[diff z].bytes required;
77: num z ¬ encode z[diff z].num of elements;
78: diff z ¬ diff z + 1;
79: SaveVLV(out, diff size z, num z);
80: end if
. Save the differences to a file, using a given number of bytes, in binary format
81: out.write(differences[i].diff x, diff size x);
82: out.write(differences[i].diff y, diff size y);
83: out.write(differences[i].diff z, diff size z);
84: end for
85: end procedure

297LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

The decoding process is very similar. In the first stage subsequent bytes are read from
the encoded file and then decoded. After initial decoding the numbers are converted from
differential coding into plain values (actual measurement values).

IN:Source file in, OUT destination file out
1: procedure DecodeFile(in, out)
. Read 4-byte integer number (binary)
2: in.read(LinesCount, 4);
. Read first values stored using 8 bytes
3: in.read(X, 8);
4: in.read(Y, 8);
5: in.read(Z, 8);
. Output the read values in text format
6: out.write(X div 1000, �.�, X mod 1000, � �);
7: out.write(Y div 1000, �.�, Y mod 1000, � �);
8: out.write(Z div 100, �.�, abs(Z) mod 100, � \n�);
. Read the number and size of differences
9: LoadVLV(in, num x, diff size x);
10: LoadVLV(in, num y, diff size y);
11: LoadVLV(in, num z, diff size z);
12: for i ¬ 1 to LinesCount do
13: if num x = 0 then
14: LoadVLV(in, num x, diff size x);
15: end if
16: if num y = 0 then
17: LoadVLV(in, num y, diff size y);
18: end if
19: if num z = 0 then
20: LoadVLV(in, num z, diff size z);
21: end if
. Read the differences stored in binary format as integer numbers, using a given number of bytes
22: in.read(dx, diff size x);
23: in.read(dy, diff size y);
24: in.read(dz, diff size z);
25: X ¬ X + dx;
26: Y ¬ Y + dy;
27: Z ¬ Z + dz;
. Calculate new values and output in text format
28: out.write(X div 1000, �.�, X mod 1000, � �);
29: out.write(Y div 1000, �.�, Y mod 1000, � �);
30: out.write(Z div 100, �.�, abs(Z) mod 100, � \n�);
31: num x ¬ num x -1;
32: num y ¬ num y -1;
33: num z ¬ num z -1;
34: end for
35: end procedure

As a result of a cycle of coding/decoding operations we obtain the same file as the input,
hence we deal with the lossless data compression.

The effectiveness evaluation of the proposed algorithm is presented in Table 6.

Table 6. Compression ratio and computation time for the files saved
 using differential and VLV encoding

emaN eziselifecruoS
]setyb[

eziselifdesserpmoC
]setyb[

oitarnoisserpmoC
]%[

emitnoisserpmoC
]s[

egarohcnA 232213696 89472307 1.01 6.821

gnigniwS 697082661 05478791 9.11 7.03

etaG 678502451 47366251 9.9 9.92

skcerW 0454784 012914 6.8 0.1

298 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

Comparison of the above results to the ones obtained using LZW method shows, that the
compression ratio when using differential and VLV coding is slightly better and computation
time shorter. This leads to a conclusion, that the method based on differential coding combi-
ned with coding using varying number of bytes is well adjusted to the characteristics of the
sea survey measurement data. The theoretical low boundary for the compression factor is
approximately 6.8%, which could be obtained when all the subsequent (x, y, z) numbers in a
file are encoded using single bytes (3 bytes for a measurement point).

LZW compression of differential data stored using varying number of bytes

The data obtained after conversion to differential form and stored using VLV algorithm
could be further processed by LZW compression, in order to minimize the redundancy in data.
In order to verify the validity of such an approach, the compression of test files encoded as
described in previous section �Data compression using LZW algorithm� was carried out. The
results are presented in Table 7.

Due to additional application of LZW algorithm, further reduction of data size was achie-
ved (50-70% smaller size than in the previous step). After applying all the proposed techniqu-
es, i.e. differential coding, encoding using varying number of bytes and LZW compression,
the final compression factor of 5-10% can be obtained for measurement data files. Hence,
the reduction of data size by a factor of 10-20 was achieved. It should be noted, that proces-
sing time is shorter than for pure LZW compression. This could be explained by the fact, that
the amount of data sent as the input to LZW algorithm is significantly smaller due to initial
reduction by the differential and VLV encoding, and those two algorithms are much faster
than LZW.

Table 7. Compression ratio and computation time for the data files stored using differential coding,
VLV coding and LZW compression

emaN eziselifecruoS
]setyb[

eziselifdesserpmoC
]setyb[

noisserpmoC
]%[oitar

noisserpmoC
]s[emit

egarohcnA 232213696 68936544 4.6 3.012

gnigniwS 697082661 03466441 7.8 0.25

etaG 678502451 42820111 2.7 8.74

skcerW 0454784 743852 3.5 7.1

Conclusions

In Figure 6 the summary of the research results is presented in terms of the compression
factor obtained for test data files using different encoding methods.

Measurement data files obtained as a result of sea surveys performed using a multibeam
echosounder are quite considerable in size, since they contain millions of measurement po-
ints. Saving this data is not problematic, however it should be noted, that storing or transmit-
ting such huge data sets can be cumbersome. In certain cases introducing a lossless com-
pression method is definitely advisable. Utilising popular universal compression algorithms
(such as LZW implemented in the ZIP compressor) gives good results, reducing the data
volume by a factor of up to five.

299LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

The method proposed in this paper consists in initial reorganisation of data file by discar-
ding redundant information, followed by calculating differences between measurement po-
ints and encoding them using varying number of bytes, and finally compressing using LZW
algorithm. Such a procedure leads to significantly improved compression results, both in
terms of compression ratio and processing time. The compression ratio reaches 5-10%,
which means reduction by order of magnitude. The whole procedure is reasonably fast,
overall processing time is shorter than for ZIP compression alone.

The developed algorithm may be used in hydrographic software as additional functio-
nality for saving source measurement data. Its utilisation may significantly reduce the amo-
unt of stored data, faster data transfer in computer networks, while still maintaining accep-
table compression time.

It should be clearly emphasized, that the presented method of differential binary data
coding along with the additional ZIP compression could be easily adapted for the compres-
sion of other existing file formats. In case of the files containing similar information (loca-
tion, depth) the obtained benefits (compression ratio) should be probably comparable. The
authors focused on one of the commonly used formats in order to perform a broad spectrum
of tests and to develop a detailed compression algorithm. This also allowed to perform a
reliable comparison of the results obtained using different compression methods.

It seems purposeful for hardware and software vendors to look for technical solutions
allowing for a significant reduction of data (measurement data and DTM data), while prese-
rving the detailed bathymetric information.

Figure 6. Effectiveness comparison of presented compression methods for ASCII UTM data

300 WOJCIECH MALEIKA, PIOTR CZAPIEWSKI

References

Borkowski P., 2012: Data fusion in a navigational decision support system on a sea-going vessel. Polish
Maritime Research vol. 19, no. 4(76): 78-85.

Chybicki A., £ubniewski Z., Moszyñski M., 2010: Using wavelet techniques for multibeam sonar bathyme-
try data compression. Hydroacoustics vol. 13, no. 3: 31-38.

Cormack G.V, Horspool R.N., 1984: Algorithms for adaptive Huffman codes. Information Processing Letters
vol.18, no. 3: 159-165.

Grabmayer C., Endrullis J., Hendriks D., Klop J.W., Moss L.S., 2012: Automatic Sequences and Zip-
Specifications. 27th Annual ACM/IEEE Symposium On Logic In Computer Science (LICS), Book Series:
IEEE Symposium on Logic in Computer Science: 335-344, DOI: 10.1109/LICS.2012.44.

Herzfeld U.C., Matassa M.S., Mimler M., 1999: A Program for Matching Universal Transverse Mercator
(UTM) and Geographic Coordinates. Computers & Geosciences vol. 25, no. 7: 765-773, DOI: 10.1016/
S0098-3004(99)00020-5.

£ubczonek J., 2006: Analiza porównawcza metod modelowania powierzchni w aspekcie opracowania nume-
rycznego modelu dna morskiego. Roczniki Geomatyki t. 4, z. 3: 151-163, PTIP Warszawa.

Maleika W., Czapiewski P., 2013: Visualisation of multibeam echosounder measurement data. [W:] Maji P. et
al. (Eds.) Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science vol. 8251: 373-
380, Springer-Verlag, Berlin Heidelberg.

Maleika W., 2013: The influence of track configuration and multibeam echosounder parameters on the accu-
racy of seabed DTMs obtained in shallow water. Earth Science Informatics 6: 47�69, DOI 10.1007/
s12145-013-0111-9.

Moszyñski M., Chybicki A., Kulawiak M., £ubniewski Z., 2013: A novel method for archiving multibeam
sonar data with emphasis on efficient record size reduction and storage. Polish Maritime Research no.
1(77), vol. 20.

Stateczny A., Grodzicki P., W³odarczyk M., 2010: Badanie wp³ywu parametrów filtracji geodanych pozy-
skiwanych wielowi¹zkow¹ sond¹ interferometryczn¹ GeoSwath+ na wynik modelowania powierzchni
dna. Roczniki Geomatyki t. 8, z. 5: 121-130, PTIP Warszawa.

Stephens D., Diesing M., 2014: A comparison of supervised classification methods for the prediction of
substrate type using multibeam acoustic and legacy grain-size data. PloS ONE vol. 9, no. 4.

Ziv J., Lempel A., 1977: Universal Algorithm for Sequential Data Compression, IEEE Transactions on
Information Theory vol.23, no. 3: 337-343.

Abstract

Data gathered through seabed surveys performed using multibeam echosounder tend to be significant
in size. Quite often a single measurement session leads to obtaining even several million distinct points
(usually in x, y, z format). These data are saved in files (often text files), where x, y represent the location
of a point (in geographical format, or more commonly in UTM format) and z represents the measured
depth at the respective point. Due to the huge amount of such points, the data occupy a significant space
in memory or in storage system (the order of megabytes for small areas and of gigabytes for larger
ones). The paper contains a survey of existing methods of compressing ASCII UTM files and a
proposal of a novel method tailored for a particular data structure. As a result of utilising differential
coding and coding using varying length values, the size of such files can be diminished by a factor
exceeding ten, while preserving the full information. The paper presents a detailed description of the
proposed algorithm and experimental results using real data.

Streszczenie

Dane pozyskane z sonda¿y dna morskiego wykonane z u¿yciem sondy wielowi¹zkowej cechuj¹ siê
znacznym rozmiarem. Bardzo czêsto w wyniku jednej sesji pomiarowej otrzymujemy nawet kilka
milionów pojedynczych punktów (najczê�ciej w formacie x,y,z). Informacje te zapisywane s¹ w pli-
kach, czêsto tekstowych, gdzie x,y to po³o¿enie punktu (w formacie geograficznym lub czê�ciej UTM),

301LOSSLESS COMPRESSION METHOD FOR ASCII UTM FORMAT SEA SURVEY DATA OBTAINED ...

a z okre�la zmierzon¹ g³êboko�æ w tym punkcie. Ze wzglêdu na ogromn¹ liczbê tych punktów dane te
zajmuj¹ w pamiêci komputera lub na dyskach znaczny rozmiar (liczony w MB dla ma³ych obszarów
lub GB dla wiêkszych). Autorzy przedstawili w artykule ró¿ne metody kompresji plików ASCII UTM,
w tym opracowan¹ autorsk¹ metodê dopasowan¹ do struktury danych. Dziêki zastosowaniu metody
zapisu ró¿nicowego z wykorzystaniem zmiennej d³ugo�ci w bajtach mo¿emy ponad dziesiêciokrotnie
zmniejszyæ rozmiary tego typu plików, przy zachowaniu pe³nej informacji. W artykule przedstawiono
szczegó³owy algorytm oraz testy wykonane na danych rzeczywistych.

dr in¿. Wojciech Maleika
wmaleika@wi.zut.edu.pl

dr in¿. Piotr Czapiewski
pczapiewski@wi.zut.edu.pl

