
133DETERMINING THE NUMBER OF TREES USING AIRBORNE LASER SCANNING AND TRUE ORTHOIMAGERYPOLISH ASSOCIATION FOR SPATIAL INFORMATION
ANNALS OF GEOMATICS 2009 m VOLUME VII m NUMBER 2(32)

DETERMINING THE NUMBER OF TREES
USING AIRBORNE LASER SCANNING

AND TRUE ORTHOIMAGERY

OKRE�LANIE LICZBY DRZEW Z WYKORZYSTANIEM
LOTNICZEGO SKANOWANIA LASEROWEGO

I PRAWDZIWYCH ORTOFOTOMAP

Piotr Tompalski1, Piotr Wê¿yk1, Roeland de Kok2, Mateusz Kukawski1

1 Laboratory of GIS and Remote Sensing, Department of Forest Ecology, Faculty of Forestry,
University of Agriculture in Cracow, Poland

2 ProGea Consulting, Cracow, Poland; landConsult.de, Germany

Keywords: number of trees, tree density, airborne laser scanning, true orthoimagery
S³owa kluczowe: liczba drzew, zagêszczenie drzew, lotnicze skanowanie laserowe, prawdziwe
ortofotomapy

Introduction

A multi-level forestry model, which is not only to predict income, requires accurate and
rapid information about its resources. Precisely determined parameters such as diameter at
breast height (dbh), height, canopy closure and volume are essential for proper decision
making and therefore for forest management. Typical methods of tree/forest measurement in
Poland are based on statistical methods and define average stand parameters from surveys
done on selected areas (grid of forest inventory plots).

It has been shown by many authors that CIR images and airborne laser scanning (ALS)
data are suitable for determining selected forest parameters (Dubayah, Drake 2000; Lefsky
et al., 2002). The main issue with airborne laser scanning, for forests concerns the vertical
structure (Hyyppä et al., 2006; Wê¿yk et al., 2008). Airborne images (photos or line scanner
multi- or hyperspectral imagery), on the other hand, can deliver information about tree species
and health conditions by means of interpretation and classification (Wê¿yk et al., 2003;
Lillesand et al., 2007). Both types of data can be used for determining tree numbers, tree
density and spatial arrangement (Brandtberg, Walter, 1998; Leckie et al., 2003; Wang et al.,
2004; Koch et al., 2006). The number of trees in the forest unit changes over the time. The
older the forest stand is, the fewer tree stems it has, and even if planted in a regular order,



134 PIOTR TOMPALSKI, PIOTR WÊ¯YK, ROELAND DE KOK, MATEUSZ KUKAWSKI

different habitat conditions and competition between them, lead to diversified spatial distribution
of trees in the stand.

The use of ALS data for counting trees in a forest, has been the subject of many studies.
The approach used by most authors is based on so called �watershed segmentation� (Bleau,
Leon, 2000; Kwak et al., 2007), a procedure based on GIS spatial analysis of the inverted
Canopy Height model (CHM) built on the first pulses reflected from the crown surface and
registered by an airborne scanner. This method results in delineating regions (crown surfaces)
which share the same outflows.

Other methods are based on remotely sensed imagery (airborne digital photos, line scanner),
on which Object Based Image Analysis (Wê¿yk, de Kok R., 2005; Tiede, Hoffmann, 2006;
Wê¿yk et al., 2006) is performed in order to find tree crowns. So called �hot-spots� have a
macrostructural component in the bi-directional reflection properties of solar energy in the
landscape as well as a typical microstructural feature in the tree canopy. These �hot-spots� in
tree crowns shares some similarity with equal effects on other scales, particularly in the
sense that shadow components are not detectable within, but very easy to find directly
around, crowns. Therefore �hot-spots� can be retrieved using features with relational attributes
towards their neighborhood. 

Segmentation decisions assign local populations of pixels which share a common spectral
property (Maier et al., 2008; Tiede et al., 2008). Although segmentation can be considered a
special form of classification, the crucial part in segmentation is the establishment of  the
unique features of each local population based upon a very small range of common properties
among spatial (and local) neighboring pixels and their characteristic differences to neighboring
pixel-populations, not necessarily in the immediate vicinity of these local pixels. The
segmentation process results in local pixel populations with a unique identity. Based upon the
total combination of attributes, each of these pixel populations is (almost) unique, especially
in shape, area and of course in the neighborhood. Only a relatively small set of these attributes
are considered in the sequential classification process afterwards. Registered local pixel
populations can also be regarded as image object-primitives or basic image objects.
Classification does not concern the uniqueness of each member inside the population, but
stresses the common properties over a wide range of features among the members, not
locally, but within the feature space. Class membership is based upon a small selection of
attributes compared to the total amount of attributes assigned to a local pixel population or
image object primitive. A perfect segmentation setting for forest inventory purposes would
allow registration of the hot-spots as a local population with a unique identity. The relative
deviation from its complete surrounding populations, which do not lack shadow properties,
makes it easy to assign tree crown hot-spots fully automatically. The relative properties
concerning their neighborhood are unique and repetitive through several scales and solar
conditions. Transferability is therefore inherent to the standard behavior of tree crown hotspots
and their surroundings. The structure of the tree, as it strives to capture sunlight, must create
shadow prone areas within and around the light intercepting branch/leaf skeleton. Ideal cases
are scale levels for hotspots, where at least 20 pixels are part of the crown center. This
would be effective in crown areas higher larger than 10 metres in height and with image
resolutions better than 0.5 m. The automatic registration of tree hotspots as part of a shadow
containing the crown as well as shadow surrounding the crown area makes it possible to
assign a unique identity to each individual crown shaped complex. For trees with a
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simple, monopodial shape, this would be identical to a nearly complete tree crown structure.
For non monopodial and complex tree shapes, these properties are less successful. The
beech tree family, being well known for it�s crown complexity and the inability to  recognize
individual within tree populations, by visual as well as automatic image interpretations. Because
of the huge variety in crown shapes among species and ecotypes, the general trend is in
favor of a crown that optimizes light interception and strives for continuous height increment.
This would favorites crown shapes showing hotspots and often a single hotspot per crown. 

In addition to these methods, we have adopted a technique based on data fusion: ALS
cloud point and true orthoimagery. The method uses a single NIR band from available line
scanner bands (TopoSys) to classify areas covered by high vegetation (pine crowns). The
plant spectral response is much more distinct within the invisible range (NIR; 750�900 nm)
and generally pixel values are highest when illuminated part of tree crowns (�hot-spots�).
This fact was used as the base of our second approach, in the fusion method it was only a
mean to mask areas overlaid by pine crowns and specify the regions for watershed
segmentation.

Generally, tree counting procedures based on ALS data lead to underestimation of the tree
numbers. However, Persson et al. (2002) have shown that 71% of correctly recognized trees
represents 91% of the total stem volume in a stand. The smaller the crown is, the more
difficult it is to detect, however a small crown also means a low timber volume.

The errors which can occur during automatic tree detection, using both ALS and image
data, are of two types. First, the so called commission errors can occur � when an object
(e.g. branch) is incorrectly detected as a tree or one tree is recognized as many trees (due to
delineation inside the crown). Secondly, one can experience omission errors � where an
existing tree is not recognized (Wulder et al., 2000). These two types of errors describe the
approach more precisely than only the detected number of trees.

The purpose of this study was to test the different approaches of determining the number
of trees using ALS and true orthoimagery datasets and compare the results to a reference.

Materials and methods

Study area

The study transect was located in the central-west Poland, in the Milicz Forest District
RDLP Wroc³aw (WGS84: 51°27' N; 17°12' E), covering approximately 3.2 ha. The area was
selected from a homogeneous part of a subcompartment (236a) covered by Scots Pine
forest (Pinus sylvestris L.). The age of the stand, according to Polish State Forest database
(SILP/LAS), was 107 years, the mean height was 23 m and the dbh was 30 cm.

Reference data

Tree crowns were manually digitised on screen from the CIR true orthoimagery, highlighted
by CHM to be used as the reference data. The total number of tree crowns digitized in the
transect was 1515 (ca. 473 trees/ha). An additional check study was done, based on on-
screen digitizing from the RGB orthophotos generated from aerial images (UltraCam Vexcel;
0.15 m pixel resolution). The results show that using only radiometrical response, without
information about the height of the trees, leads to errors of omission.
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ALS and line scanner TopoSys data

The ALS data were collected in July 2007 using a TopoSys glass fibre scanner Falcon II.
The average flight height was 550 m above the ground. Mean point density was ca. 14 pts/m2.
True orthoimagery (16 Bit; 4 bands: R, G, B, NIR) was acquired simultaneously with ALS
data, with the pixel size equal to 0.25 m. During the study, the authors experienced problems
with generating correct canopy models in the overlapping areas of scans because of different
point densities, therefore the shape of the study area was chosen to contain only single scan
from the many acquired during the scanning campaign. Solving this problem will be the
subject of separate studies.

To determine the number of trees, different approaches were used. The first one was
based only on ALS point clouds, the second one, on segmentation of true orthoimagery with
a small contribution of height from LiDAR data. The third method was an experimental
fusion of ALS data and single NIR-band
true orthoimage.

CHM generation and watershed
segmentation

To define the number of trees using
the �GIS watershed� approach, the
CHM was generated using different
parameters and algorithms. First, the
DTM was created (Terrasolid Ltd.) and
used to normalize the ALS point cloud.
This dataset was used for different
types of canopy modeling. The models
differ in pixel size, filtering method and
local maxima and minima preservation
(Table 1, Fig. 1). All these parameters
were defined using the FUSION
software (McGaughey, 2007).

The watershed segmentation
algorithm was performed (ArcGIS
ESRI) on each of the surface canopy
models (GRID) in order to find which
pixel size and filtering parameters are
optimal for deriving the number of trees
closest to the reference value. In most
cases, the watershed algorithm
produced a result in which many
segments were too small, especially for
CHMs with pixel size 0.25 m. Knowing
the average size of a crown, polygons
smaller than 1 m2 were removed in such
cases.

MHC ezislexiP
]m[

retliF gnivreserP
amixam

dna
aminim

1A 52.0 enon �

2A 52.0 )3x3(naidem,)3x3(htooms �

3A 52.0 )3x3(naidem,)3x3(htooms +

4A 52.0 )5x5(naidem,)5x5(htooms �

5A 52.0 )5x5(naidem,)5x5(htooms +

6A 52.0 )9x9(naidem,)9x9(htooms �

7A 52.0 )9x9(naidem,)9x9(htooms +

1B 5.0 enon �

2B 5.0 )3x3(naidem,)3x3(htooms �

3B 5.0 )3x3(naidem,)3x3(htooms +

4B 5.0 )5x5(naidem,)5x5(htooms �

5B 5.0 )5x5(naidem,)5x5(htooms +

6B 5.0 )9x9(naidem,)9x9(htooms �

7B 5.0 )9x9(naidem,)9x9(htooms +

1C 0.1 enon �

2C 0.1 )3x3(naidem,)3x3(htooms �

3C 0.1 )3x3(naidem,)3x3(htooms +

4C 0.1 )5x5(naidem,)5x5(htooms �

5C 0.1 )5x5(naidem,)5x5(htooms +

6C 0.1 )9x9(naidem,)9x9(htooms �

7C 0.1 )9x9(naidem,)9x9(htooms +

Table 1. Parameters used for creating different CHMs
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Object oriented image analysis (OBIA)

Definiens Developer ver. 7.0.8 was used to segment the image to gather the tree-crown
�hot-spots�. The segmentation was based upon derived channels from the original NIR/Red/
Green/Blue color composite (line scanner TopoSys; 25 cm pixel; 16 Bit). The first derived
channel was a Principle Component (PC1) and the second and third channels were edge
detection imagery. After initial classification of the �hot-spots�, a relaxation of the segmentation
took place, with the scale factor equal to 35, to increment the area of the �hot-spot� and let
it merge (object based fusion) with its direct edges: border/frame (Wê¿yk, de Kok R., 2005).
This step allows the creation of crown hotspots with an area of more than 1.5 m2 (>25
pixels). The nDSM (CHM) employed in this method was used to cut off objects below 7.0 m
height.

It is notable that �hot-spot�s in tree crowns share some similarity with equal effects at
other scales, particularly in the sense that shadow components are non existent within these
hotspots, but clearly detectable directly in image objects (and here in edges) surrounding
crown hotspots. The biophysical property of the crown hotspot is related to tree crowns in
general and does not depend on solar angle or season. This makes this feature reliable and
transferable. 

Figure 2 presents OBIA result, with a single detected hotspot marked in red.

Analysis based on data fusion

The not perfect results produced by the two approaches showed the authors the necessity
to test an additional solution: the fusion of ALS and image datasets (Fig. 3). Standard watershed
segmentation methods lead to incorrect estimation of the number of trees when the crown
shape is too complex or when there are smaller crowns or undergrowth in the gaps (Kwak et
al., 2007). To overcome this problem, a mask containing tree crowns was created based on
NIR band (true ortho) to limit the areas for the watershed segmentation. The first step was
the reclassification of NIR band, into two classes. The threshold value (<1945) was chosen
in order to separate tree crowns from the rest of the image (mainly shadows). The mask (0
and 1) was filtered and generalized and then multiplied by CHM height value, creating a new
dataset for watershed segmentation.

Results

The results of the �GIS watershed� CHM segmentation (Table 2) were used as preliminary
verification of the suitability of the canopy surface created for analysis. It was clearly observed
that a small pixel size (0.25 m), together with lack of a small degree of filtering (smooth and
median filter) leads to overestimation of the tree number (i.e.: A1 and A2). On the other hand,
a pixel size of 1.0 m and/or to strong filtering, leads to its underestimation (i.e.: B6, C2÷C7).
The results were additionally filtered in order to remove poligons (segments) smaller than
1m2. These polygons, in most cases, especially eith the models with small pixel size, were a
result of wrongly performed segmentation by the program. In addition, in a mature pine
forest stand (107 years), the probability that tree crown area is smaller than 1m2 is very low.
Especially for CHM based on small pixel size, this treshold resulted in reducing the commision
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errors. Further accuracy analyses were
carried out for models where the
derived number of trees is ± 30% from
the reference (bold in Table 2).

The GIS spatial analysis with the
reference data (crown outline poly-
gons) and watershed algorithm derived
centroids showed (Table 3) that both
commission (objects wrongly detected
as trees) and omission errors (trees not
detected) occurred.

The results of the two approaches
and additional data fusion method differ
from the reference data gathered
through on-screen digitization (Table 4,
Fig. 4). With the �GIS watershed�
approach, the best results have been
derived from the A4 CHM surface
(pixel size: 0.25 m, smooth filter 5x5;
median filter 5x5; without preserving
local maxima and minima). The OBIA
approach derived results equal to 74.5%
of correctly detected trees. The result
of the data fusion method led to the
detection of 72.6% trees correctly. The
commission errors were lowest using
the �GIS watershed analysis� (4.3%)
and almost twice as high using OBIA
(8.1%) and the data fusion method
(8.9%). Conversely, the omission
errors were highest concerning the
�GIS watershed� approach (28.4%)
and lowest for data fusion method
(16.4%).

Table 3. Detailed watershed segmentation results. Reference tree number: 1515

Table 2. 
�
GIS watershed� segmentation results.

Reference number of trees: 1515

MHC seertdetcetedforebmuN

snworclla lavomersnogylopretfa
m1< 2

seert % seert %

1A 746.01 8.206 0128 9.144

2A 895.2 5.17 9912 1.54

3A 467.2 4.28 8832 6.75

4A 126.1 0.7 8621 3.61-

5A 976.1 8.01 6921 5.41-

6A 240.1 2.13- 357 3.05-

7A 940.1 8.03- 067 8.94-

1B 310.3 9.89 7782 9.98

2B 772.1 7.51- 6011 0.72-

3B 082.1 5.51- 4411 5.42-

4B 148 5.44- 066 4.65-

5B 958 3.34- 776 3.55-

6B 043 6.77- 762 4.28-

7B 033 2.87- 462 6.28-

1C 870.1 8.82- 7701 9.82-

2C 605 6.66- 305 8.66-

3C 545 0.46- 345 2.46-

4C 922 9.48- 622 1.58-

5C 932 2.48- 832 3.48-

6C 87 9.49- 87 9.49-

7C 57 0.59- 57 0.59-

stluseR ecafrusMHC

4A 5A 2B 3B 1C

lla deretlif lla deretlif lla deretlif lla deretlif lla deretlif

seertdetceteD seert 1261 8621 9761 2921 7721 4011 0821 1411 8701 0601

% 0,701 7,38 8,011 3,58 3,48 9,27 5,48 3,57 2,17 0,07

yltcerroC
seertdetceted

seert 489 5101 489 7101 869 079 479 979 419 319

% 0,56 0,76 0,56 1,76 9,36 0,46 3,46 6,46 3,06 3,06

noissimmoC
rorre

seert 632 56 014 431 512 99 802 601 611 501

% 6,51 3,4 1,72 8,8 2,41 5,6 7,31 0,7 7,7 9,6

noissimmO
rorre

seert 114 034 393 614 315 215 394 505 865 275

% 1,72 4,82 9,52 5,72 9,33 8,33 5,23 3,33 5,73 8,73
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Discussion and conclusions

This study confirmed that important forest taxation parameters like the number of trees
can be determined using remote sensed data, ALS cloud point or multispectral true
orthoimagery. The analyses showed, however, that approaches based only on the CHM lead
to a higher estimation error than image analysis (segmentation) or both fusioned lidar and
image datasets. The most accurate results were obtained using the OBIA method, slightly
lower using data fusion. Automatic tree detection using only ALS data is possible, however
some improvement is needed. The crucial factor mainly influencing the output, is the
characteristic of the canopy height model (resolution, filtering parameters). The better the
model describes actual canopy shape, the better are the results. Therefore the density of
points is very important.

Compared to research done by other authors, the density of ALS data can influence the
results. The study by Holmgren and Persson (2004) of pine stands showed results of detecting
the number of trees at 75%, based on 1.2 points/sqm ALS dataset. A higher density of points can
provide better results. Maltamo et al. (2004), using point cloud with density of 10 points/sqm
achieved better results in similar pine stand (94%).

Special attention has to be paid to the results of the data fusion method. The improvement
of accuracy in detecting trees is clearly seen: simple analysis (reclassification, creating mask)
enabled an increase in the number of all detected trees of about 20% (from 83.7% to 104.0%);
increasing the accuracy of about 5% (from 67.0% to 72.6%) and lowering the omission
error to around 8% (from 28.4% to 16.4%).

Compared to research done by Wang et al., who used Treesvis software for the same
study area in Milicz, our results are slightly better. A number of test plots (no. 8, 9, 10 and
11) used by Wang et al. are located the same compartment as our transect. The average
accuracy value for those plots was only 50.0% (Wang et al., 2008), which can be explained
by the different, non-homogeneous spatial distribution of the tree crowns.

Knowing the actual number of trees in a forest stand and their density is important not
only for the forest owner, for whom this information can be treated as an indicator of certain
treatment of the forest. In addition, the number of the stems and their locations is important

Table 4. Results of analysed approaches. Reference number of trees: 1515

dohteM dehsretawSIG
)deretlif,4A(

AIBO
)deretlif(

noisufataD
MHC+RIN

seertdetceteD seert 8621 7841 6751

% 7.38 2.89 0.401

yltcerroC
seertdetceted

seert 5101 9211 0011

% 0.76 5.7 6.27

noissimmoC
rorre

seert 56 221 531

% 3.4 1.8 9.8

rorrenoissimO seert 034 562 942

% 4.82 5.71 4.61
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to determine the spatial distribution of the trees in a compartment, which allows for planning
for the final cuts or thinning (i.e. the shape of the area of clear cuts).

Additional work is still needed concerning the estimation of the number of trees in a stand
form remotely sensed data, especially for detecting trees of different age, species composition
and stand structure.
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Streszczenie

Stosowany obecnie model le�nictwa wielofunkcyjnego wymaga aktualnej i dok³adnej informacji o jego
zasobach. Jednym z wielu wa¿nych parametrów drzewostanu jest liczba drzew i ich przestrzenne
rozmieszczenie. Obie te cechy zmieniaj¹ siê w czasie ¿ycia drzewostanu. Im starszy jest drzewostan
tym mniej drzew posiada. Pomimo faktu, ¿e drzewa sadzone s¹ z regu³y w regularnej wiê�bie, zró¿ni-
cowanie warunków siedliskowych oraz konkurencja pomiêdzy drzewami prowadzi do niejednakowe-
go przestrzennego rozmieszczenia drzew oraz zró¿nicowania ich rozmiaru. Celem badañ by³o okre-
�lenie liczby drzew w drzewostanie sosnowym (Pinus silvestris L.) na podstawie danych z lotniczego
skaningu laserowego (ALS) oraz obrazu pozyskanego za pomoc¹ skanera linijkowego (true ortho
RGB/NIR). Analizy zosta³y przeprowadzone w wybranym transekcie 107 letniego drzewostanu na
terenie nadle�nictwa Milicz. Jako danych referencyjnych u¿yto liczby drzew okre�lonej na podstawie
zwektoryzowanych koron. Dwie ró¿ne metody zosta³y zastosowane do automatycznego okre�lenia
liczby drzew i ich po³o¿enia. Pierwsza metoda, nazwana �GIS watershed� oparta by³a na modelach
koron generowanych z danych ALS. Zastosowano ró¿ne algorytmy w celu znalezienia optymalnego
modelu jak najdok³adniej reprezentuj¹cego powierzchniê koron drzew. Druga metoda nazwana OBIA
oparta by³a o segmentacjê oraz klasyfikacjê obrazu true ortho (R, G, B, NIR) i prowadzi³a do wykrycia
tzw. hot-spot. Zastosowano równie¿ metodê ³¹cz¹c¹ dane lidarowe oraz true ortho (data fusion). Do
porównania uzyskanych wyników zastosowano analizy przestrzenne. Wyniki wskazuj¹ ¿e zarówno
dane ALS jak i dane obrazowe mog¹ byæ u¿yte do okre�lania liczby drzew w rêbnym drzewostanie
sosnowym. Dok³adno�æ wykrycia drzew wynios³a 67% dla metody pierwszej (ALS) oraz 74.5% dla
metody drugiej (true ortho). Po³¹czenie zestawów danych zaowocowa³o wynikiem równym 72.6%.
Badania bêd¹ kontynuowane w celu  poprawy rezultatów dla zastosowanych metod, równie¿ dla
drzewostanów w innym wieku i o innym sk³adzie gatunkowym.
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Figure 1. Differences between Canopy Height Models. Surfaces: A5, B5 and C5 preserve local peaks

Figure 2. Object oriented image analysis (OBIA) result, with a single detected hotspot marked in red
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Figure 4. Results of all used approaches presented on a subset of study area

Figure 3.  Data fusion (True ortho + ALS) approach


